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NATIONAL ADVISORY COMMITTEE FCOR AERONAUTICS

TECHNICAL NOTE NO. 1360

THE STABILITY OF THE LAMINAR BOUNDARY LAYER
IN A COMFRESSIBLE FLUID

By Lester Lees
SUMMARY

The present paper is a continuation of a theoretical investl-
gation of the stability of the laminar boumdary layer in a com- =
pressible fluld. An approximate estimate for the minlmum critical
Reynolds number Re"rmi » or stablllty limit, is obtained in berms

of the distribution of the kinematic viscosity end the product of

— . %
the mean density p¥% and mean vorticity du® across the boundary

dar
. layer. With the help of this estimate for Rp , 1t is shown
Cl‘min ’
that withdrewing heat from the fluld through the sclid swrface
increases Recrmi and stabllizes the flow, as compared with the
n )
flow over an insuwlated surface at the same Mach munber. Conduction
of heat 4o the fluld through the solid surface has exyactly the
opposite effect, The value of Recr for the insunlated surface

decreases as the Mach number increases for the case of a wniform
free-stream veloclity., These goneral conclusions are supplemented
by detalled calculations of the cwrves of wave number (inverse

wave length) against Reynolds number for the neutral dlsturbances
for 10 representative cases of insulated and noninsulated surfaces.

So far as leminar stabllity is concerned, an important 4if-
ference exlgts between the case of a subsmic and supersonic froe-
gtroam velocity outside the boundary laysr. Theo nsubral boundary-
" layer disturbances that are significant for laminer stability die
out exponentially with distance fram the solid surface; thorefore
tho phasc wvelocity o¥ of those disturbances is subsonic relative

to the free-stream velocity uo* - or u ¥ - c*< ao s vhere ag a_¥

. u
is the local sonic velocity. When fachi =My < 1 (vhere M, is

a*

free-stream Mach number), it follows 'bhat 0 < e* < S Xpays ond eny
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laminar boundary-layer flow is ultimately unstable at pufficiently
high Reynolds numbers because of the destabilizing action of vis-
cogity near the solid surface, as expla_ined.\by Prandtl for_ the

_ - 1 -
incompressible fluld. When M, > 1, however, _9-- >1 - I—«ih > 0.

. u *- (v}
(o)

If the quanbtlty [—E— (533 d—'E—*) 18 large enough negatively,
dy* dy* e lipys

the rate at which energy passes from the disburbance to the mean

———— .*
flow, which is proportional to -o¥ [ 2 (p* E‘-l-)] , cen
9y AT A

alvays be large enough to counterbalance the rate at which energy
passed from the mean flow to the dlstwrbance becausoe of the desta-
bilizing action ofviecosity near the solid surface. In that case
only damped disturbences exist and the leminsr boundary layeor is
oompletely stable at all Reynolds mumbers. This condition occurs
vhen the rate et which heat is withdrawn from the fluid through
the solid surface reaches or oxceeds & critical value that depends
only on the Mach number and the properties of tho gas. Calcula-
tions show that for M, > 3 (spprox.) the laminar boundary-laysr
flow for thermal equilibrium - where the heat conductlion through
the solid surface balances the heat rsdiated from the surface - 1s
campletely stable at all Reynolds numbers under free-flight conditions
\1f the free-stream velocity is uniform.

The results of the analysis of the stability of the laminar
boundary layer must bo applied wlth care to discussions of transi-
tion; howoever, withdrawing heat from the fluid through the solld
surface, for exsmple, not only increases Recrmin but also

decreases the iniltial rate of amplification of the self'-oxclted

. disturbances, which is roughly proportional to 1 crmi < Thus,

n
tho effect of the thermal condltions at the solild surface on the
transition Reynolds number Rp i similar to the effect on Ry .

: tr _ Crpin

A comparison between this conclusion éand experimental investigations
of the effect of surface heating on transition at low spceds shows
thet the results of the present papor glve the proper directlion of
this effecth. '

The extension of the rosults of the stability emalysls to
Jlaminar boundery-layer, gas flows with a pressure gradlent In the
direction of tho free streoam 1s discussed.,
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INTRODUCTION

By the theoretical studies of Heisenberg, Tollmlen, Schllichting,
and. Tin (references -1 to 5) and the careful experimental investi-
gations of Liepmann (reference 6) and H. L, Dryden and his asso-
_ciates (reference 7), it has been definitely established that- the
Tlow in'the laminar boundary layer of & viscous homogensous incom-
presaible fluwid is unstable above a certain cheracteristic critical
Reynolds number. When the level of the disturbances in the free
stream is low, as in mwost cases of technical interest, thie inherent
ingtablility of the laminar motion at suffliciently high Reynolds
nunmbers is responsible for the ultimate transition to turbulent
flow in the boundary layer. The steady laminar boundary-layer flow
would always ropresent a possible solution of the steady equatlions
of motion, but this steady flow is in a state of unstable dynemic .
egquilibriumn above the critical Reynolds number.. Self-exclied dis-~
turbances (Tollmien waves) appear in the flow, and these dlstwrb-
ances grow large enough eventually $o destroy the laminar motion.

The question naturally arises as to how the phenomena of
laminer instability and transition to burbulent flow are modifled
" vhen the fluid velocities and btemperature variations in the boundary
layer are large enocugh so that the compressibility and conductivity
of the fluld can no longer be neglocted. The present papsr repre-
sents the seocond phese of a theorebiczl investigation of the sta-
bility of the laminar boundary-layer flow of a gas, in which the
compressiblility and heati conductivity of the gas as well as its
vigcosity, are taken into account. The first part of this work
was presented in reference 8. The objects of this investigation
are (1) to dotermine how the stability of the laminar boundary
leyer 1s affected by the free-strcam Mach mumber and the thermal
conditions at the solid boundary and (2) to obtain a betbter under-
standing of the physical basis for the instability of leminar gas
flows. In this sense, the presont study 1s an extension of the
Tollmien-Schlichting analysis of the stability of tho laminer flow
of an incampressidle fluid, but the investigation 1s also concorned
with the general question of boundary-layer disturbances ina
camproessible fiudld and thelr possible inboractions with the main
external flow.

SYMBOLS

With minor sxceptions the symbols used in thls paper are tho
same as those introduced in roference 8. Physical quantities are

3
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denoted by an asterisk, or star, wheréas the corresponding non-
dimensional quantities are unstarred. A bar over a quantlity denotes
mean value; & prime clenotes a fluctuation; the subscript o denotes
freeo~-gtream values at the "edge" of the boundary layer; the sub-
seript 1 denotes values at the solld surface, and the sub-
seript ¢  denotes values at the imner "“critical layer", where
the phase veloclty of the disturbance equals the mean flow veloclty,
The free-stream values are the characteristic measures for all non-
dimensional quantities. The characteristic length msasure is tho -
boundary-lsyer thickness &, except where otherwise indlcated.
Note that in order to-conform with standard notation, the symbol &
for boundary-layer thickness is ungtarred, vhercas the symbols ¥
“and © 6 are used for bowndary-layesr dlsplacement thickness and '
boundary-layeor momentum thickneas, respectively.

x*- distance along surface
y* distance normal to surface
t¥ time
ux camponent of velocity in x¥-direction
we 2
Bt
v component of veloclty ln y¥-dlrection '
" :
T
oF
g | ‘stream function for mean flow
o¥% density of gas
r* .preseure of gas
ity temperature of gas
T* laminar shear gtress
ul* - ordinary coe:f‘ficien’c:.of vigcogity of s ...

v kinematic viscosity of gas (;;l*/b*)

L
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thermal conductivity of gas

gpecific heat at constant volume
gpeciflc heat at constant :g;ressu:re

gas constant per gram

ratio of specific heats (cp /cv) s 1.405 for air

camplex pHase velocity of boundary-layer disturbance

wave length of boundary-layer disturbance

boundary-léyer thickness

bouvndary-layer ﬂsplacement thickneas f (r - pw)dy’)
. Jo _

boundary-layer momentum thickness (f pw(l - w)ay*

wave number of boundary-layer disturbance (2mn/a%)

_2x
A% /8
_ 2x
A* [0
Po* ug* 8
Reynolds number
¥*
H]_o
po* un* 6
%
l-’-lo

Mach number . F""_-

5
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1. PRELIMINARY CONSIDERATIONS

In the first phase of this investigation (reference 8) the
gtability of the laminar boundary-layer flow of a gas l1s analyzed
by the method of small perturbations, which was already so suc-
cessfully utilized for the study of the stability of the laminar
flow of an incompressible fluid, (Bes reference 5.) By this
method a nonsteady gae flow is investigated in which all physiocal
quantities differ from their values in a glven steady gas flow
by sumall perturbations that are functions of the time and the space
coordinates, This nonsteady flow must satisfy the complete gas-
dynamic equations of motion and the same boundary conditions as
the' given steady flow. The question is whethor the nonsteady flow
demps to the steady flow, oscillates about it, or diverges from it
with time - that is, whether the small perturbations are damped,
neutral, or self-excited &isturbances in time, and thus whether
the given steady gas flow 1s steble or unsbtable. The analysis is
particularly cohcernod with the conditions for tho exlstence of
neutral disturbances, which mark the transition from stable to
unstable flow and define the minimum criticel Reynoclds number,

In order to bring out some of the principal features of the
stability problem without becoming involved in hopeless mathe-
matical complications, the solid bowmdary 1s taken as two dimen-
gional and of negligible curvature and the boundary-layer flow is
regarded as plane and essentially parallel; that is, the veloclty
component in the direction normasl to- the surface 1s negliglible and
the veloclty component parallel. to the swrface is a functlon mainly
of the distance normal to the surface. The small dlsturbances,
vhich are also two dimensional, are analyzed into Fourler com-
ponents, or normal modes, periodlc in the directlon of the free
stream; and the amplitude of each one of these partial osclllations
is a function of the distance normal to the solid swurface, thad

is;. e = m f(y) ei@(x-ct).

- In the study of the stabllity of the laminsr boundary layer,
it will be seen that only the local properties of the "parallel"
flow are significant. To lnclude the varlation of the mean veloclty
in the direction of the free stream or the velocity component normal

6
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$o the solid bowndary in the problem would lead only to higher oxder
terms in the differential equations governing the disturbances,
since both of these ractors esre inversely proportional Lo the local
Reynolds number based on the boundary-layer thickness. (See,. for
example, reference 2.) By e careful analysis, Pretsch has shown
that even with a pressure gradisent in the direction of the frse
. stream the local mean-velocity distribution alone determines the
stabllity characteristics of the lccal boundary-layer flow at
- large Reynolds mumbers (reference 9). Such a statement applies
only to the stabllity of the flqw wlthin the boundary layer. For
the interaction between the bound.ary layer and a main "external®
supersonic flow, for oxample, it is obviously the variation in
boundary-layer thic]mess and mean velocity along the surface that
is significant. (Seo reference 10.).

The aforementionsad cons:.derations also lead quite maturally
to the study of individual. par’cial oscillations of 'bhe

form f(y) eia,(x-ct) Por which the differential equations of
disturbance do not contain x and 1t explicitly. Those partial
oscillations are ideally suited for the gbudy of instebillity, for
in order to show that-a flow is unstable it is unnecessary to
consider the most general posalble disturbance; in fact, the
slmplost will suffice, It 1a only necessaxry to sho¥ that a
-particular disturbance satisfying the equations of motion and the
boundary conditions is self-excited or, in this case, that the]
Imaginary part of the complex phase velocity ¢ is positive.

In reference 8 the differential egquations goverming one
"normal mode of the disturbances in the laminar boundary layer of
a gas were derived and sbtudied very thoroughly. The complete seb
of solutions of the disturbsnce squations was obtained and the
physical boundary conditions that these solubions satisfy were
investigated., 5 was found that the final relation between the
-values of ¢, o, and R +that determines the possible neutral
disturbances (limits of stability) 1s of the same Torm in the
compresgible fluld as in the incompressible fluid, to a first
approximation. . The basig Tor this result is the fact that for
Roynolds mumbors of the order of those encommtered in most aero-
dynamlc problems, the temperature disturbances have only a negligible
effect on those particular velodlty solutions of the disturbance
equations that depend primarily on the viscoslty (viscous solu-
tions). To a . first approximation, these viscous solubtions there-
fore do not depend dlrectly on the heat conductiviby and are of
the sams form as in the incomprossible fluid, except that thoy
involve the Roynolds number based on the kinomatic viscosity noar
the solid boundary (whero the viscous forces arc important) rather
than in the froe streem. In this first approximation, the second

7
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viscosity coefficient, which 1s a measure of the dependence of the
pressure on the rate of change of density, does not affect the sta~
bility of the laminar boundary layer. From these results 1t was
inferred that at large Reynolds. nwbers the influvence of the viscous
forces on the stability ls essentlally the same as in an incom-
pressible fluid, Thig inference ls borne oul by the results of the
present paper. ' ' .

The - influence of the inertial forces on the stability of the
laminar boundary layer is reflected in the behavior of the asymp-
totic inviscid solutiong of the disburbance squations, which are
independent of Reynolds number in first approximation. The results
obtained in referonce.8 show that the behavlior of the inertial
Torces ls dominated by the distribution of the product of tho mean

denslity and mean vorticity pg'-;!- across the boundary layor. (Tho

gradient of this quantity, or %(p%), which plays the same role
ag the gradient of the vorticity-in the case of an incompressible
fluld, 1s a measure of the rate at which the x-momentum of thoe :
thin layer of fluld near the critical layer {(vhere w = c)
increases, or decreases, because of the transport of momentum by
the disturbance.) In order to clarify the behavior of the inortial
forcos, the limiting case of an inviscid fluid (R—y ) is studled
in dotail in roferencs 8. ' The following gomeral criterione are

obtalned: (1) If the guantity %(p%’ vanlshes for somo value

of w>1 - I%’“" then neutral and self-exclted subsonic disturb-
; ;
5 _

ances exist and the inviseid compressible flow is unstablo.
(2) If the quantity %Gg’—;) does not vanish for some value

of w>1 -~ b-]&f-, thon all subsonic disburbsnces of finite wave
0 : . : :

longth are damped and the inviscld comprossible flow ie stable. .
(Outsido the boundsry layer, the relative velocity: bebtweon the mean’
flow and the x~component of the phaso veloclity of a subsonic dis-
turbance is loss than the mean sonic velocity. Tho magnitude of
such a dizturbence dios out exponentially with dlstance from the
solid surfaco;) (3) In goneral, a disturbance gains onergy from

the mean flow if %(pg-g:) is poslitive at the crltical layor

(vhore w = ¢) eand losos energy to the moan flow if [:-y (pz"-—-;r ] <0.

W=C

8
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-

The general stabil:tty cri'berions for inviescid compressible
flow glve scme insight. info ’ghe effect of the inertial forces on
“the stability, bub the;y' cannot be taken over bodily so the real
compressible fluld. - Of course, if a flow is wnsbeble in the .
limiting case -of an infinite Reynolds number, the flow is unstable
for a certain finite rangs.of Reynolds number, - A compressible flow
thet is .stable when R-—3®, however, is not necessarlly stable
at all-finite Reynolds num"bers vhen the effect of viscoslty is
teken into aceount, One of the ob,jects of 'bhe _pa:'esent paper ‘is
‘o settle 'bhis quostion.

On the 'basis of the sta‘bili‘by criterions o'btained. :I.n refeor-
cnce 8, some genersl statements were mede concernling the effect of
’chermal conditions at the solid boundary on the gtability ‘of laminar
bounﬂary—layer flow. It is concluded from physical reasoning and

d
a study of 'bhe equa’cions of moan motion that tho auanti'by e p-y

. ay\ dy
vanishes for some value of w > G _f ( ) - 0, +that id, if

heat is aé’.ded. %o the fluld tlrrough the solid. suri‘ace or if the

' sw:face 1g. :Lnsulated I:E_‘ (gl’) >0 and is suf:f‘*ciently large,
S y

. 1 . .

that- is, if heat 1is ylthdrawn from the fluld 'through the solid.

surface 4t a suffir'ient rato, the quant1+v -— ( D } nevar vanishes.

-

Thus, when (-) s ,.- the laminar 'bound.ary-layer flow is desta-
. ' B 13

'bilized 'by the action o:E' the inertial forces bu‘b stabilized.
through the increage of kinematlc viscosity near the solid surface.

When -a-: > 0,  the reverse .is trus.- The guestion of which of
X
1.
these sffects 1g predom.,nant cén be anawerefd only by further s'budy
of the stability problem in a real compressible fluid :

In the present paper this invesﬁ* gat on ie con'binued along 'bhe
following,liness .

(1) A s’oudy 18'made OF how the general crlterions for insta-
bility in an inviscid dompréssible Fluild sre modified by the -
introduction of a small viscosity (stability at .veory large
Reynolds numbers) :
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(2) The conditions for the existence of neutral disturb-
ances at large Reynolds number are examined (study of asymp-
totic form of relation between eigen-values of ¢, «, and R).

{(3) A relatively simple expression for the approximate
value of the minimum critical Reynolds nuwber is derived;
this expression involves the local distribution of mean
velocity end mean temperature across the boundary layer. This
approximation will serve as a criterion from which the effect
of the free-stream Mach niumber and thermal conditions at the
solid surface on the stabllity of laminar boundary-leyer flow
is readily evaluated. The quostion of the relative influence

of the kinemstic viscosity and the diatribution of o% on
gtability would then be settled.

(4) The energy balance for smell disturbances in the real
compresasible fluld 1s considered in an attempt to clarify the
physical bagls for the instebility of laminer gas flows.

(5) In order to supplement the investigations outlined _
in the four preceding paragrephs, dotalled calculatlions are
made of the limits of steblility, or the curve of o against R
for the neutral disturbances for several representative cases
of insulated and noninsulated surfaces. The results of the
calculations are presented in figures 1 to 8 and tables I
to IV. The msthod of computation of the stability limits 1s
briefly outlined in reference 8, although the calculations
were not carried out in that paper.

In the -present investigation the work of Helsenberg (refer-
ence 1) and Lin (reference 5) on the stability of & real inconm- .
pressible fluid is naturally en indispensable gulde. In fagt, the
methods uvtilized in the present study are analogous to thdse
developed for an incompressible fluld.

The present paper is concerned only with the subsonic disturb-
ances. The amplitude of the subsonic disturbance dies out rapidly
with distence from the solid boundary. In other words, the neutral
subsonic d&isturbance is an “eigen-oscillation" confined mainly to
the boundary layer snd exlsts only for discrete eigen-valuves of ¢,
o, and R that determine the 1limits of etability of leminsr
boundary-layer flow. Disturbances classified in reference 8 as
neutral "supersonic," that is, disturbences such that the relative
veloelty between the x-component of the phase velocity of such a
disturbance and the free-stream velocity 1s greater than the local
mean sound speed in the free stream, are actually progressive sound

- 10
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waves +that impinge obliquely on the boundery layer and are reflected
with change of amplitude. XFor dlsturbances of this type the wave
length and phase velocity are obviously completely arblirary (eilgen-
valuss are continuous), and these disturbances have no significance
for boundary-~layer stabllity.

When the free-stream velocity is supersonic (Mo > l), ‘the
gubsonic bowndary-layer dlsturbances must satlsfy the requirement

— — 1
that w ¥ - c* <ag¥ or c>1 v (for My< 1, c__Z_O). Now,
- o
by analogy with the case of an incompressible fluid it ls to be
expected that for values of ¢ greater than some critical value of oo

say, all subsonic dishurbances are damped. Thus, when M, > 1,
there is the possibility that for certain msan veloclty-temperature

distributions across the boundary layer, noutral or sgelf-excited
disturbances satisfying the differential equations of motion, the

1
boundary conditions, and, also, the physical requirement that ¢ > 1- ﬁ-o

cannot be found. In that event, the leminar boumdary flow is stable
. at all Reynolds numbers. - This interesting possibility is investl-
goted in the present papex. :

2, CALCULATION OF THE LIMITS OF STABILINY OF THE LAMINAR

BOUNDARY IAYER IN A VISCOUS CONDUCTIVE GAS

In order that the complete system of solutions-of the differ-
ential equations for tho propagation of small disturbances in the
laminar boundary layer shall satisfy the physical boundary condi- -
tlons, the phese veloclty must depond on the wave length, the
Reynolds number, and the Mach number in a manner that is determined
entlrely by tho local distribution of mean velocity and mean tempera-~
ture across the boundary leyer. .In other words, the anly possible
subsonic disturbances in the laminar boundary layer are those for
which there exists & definits relatlon of the foxrm (referonce 8)

c = c(c., R, Moe) - (2.1)

Since «, R, and M02 are reaml quantities, the rélation (2.1) is
equivalent to the two relations

LS
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o, = or(u., R, M%) (2.1a)

ey = ci(oa, R, Moa) "(2.1b)

The curve ci(oc., R, Moa) =0 for o= cn(R, Mog)) for the neutral
disturbances gives the limits of stabllity of the laminar boundary
layer at a glven value of the Mach pumber, From this curve can be
determined the value of the Reynolds number below which disturbances
of all wave lengths are damped and sbove which self-exclted disturb-
ances of certain wave lengths appesr in a glven laminar boundary-
layer flow. : . '

In reference 8, 1%t 1s shown that the relation (2,1) between
the phase velocity and the wave length takes the following form:
2(, o, ¥58) = F(2) (2.2)

In equation (2.2), F(z) 1z the PietjJens function (reference 11)
defined by the relation '

L T E i

F(z) = 1 + e {2,3)
1/ (1) |2 3/2
z£ t 211_1_/.3 {3(1;) }ag
where | " -
aRwat 1/3 .
z = <‘T>'"” (v - T1) - (2b)
[+}

and the quentity I, /3(1) 1s the Hankel function of the first kind
of order 1/3. The prime depotes differentiation with respect
to y. The function E?a., ¢, M,2), which depends only on the

ie
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asymptotic inviscid solutions ¢ and @ (section & of refer-
ence 8) and not on the Reynolds number, ls defined as Ffollows:

P11 Prp' + BPip

Poy;  Poo' + BPop

(yl - _yc) E(or,, c, M°2)= , 5 (2.5)
Ty@p' + Mo W tePry
P10" + BPp |
Tl" M0202 ¢
Ty@1 ! + M2wy Toppy s
Pop” + PPop
Ty - M 22
where
B = a\[l - M 2(1 - ¢)2
%= (75 > (2.6)
i, J = l, 2 ) . -

and 'Yl and, y, axe the coordinates of the solid surface and the
"edge™ of the boundary layer, respectively.

The Tistjens function was careﬁl‘l.y recalculated in reference 8,

1
and the real and imsginary parte of the function &(z) = T-f‘-f__)
- Mz

are plotted in figure 9. (The function &{z) 3is found to be more
suitabl§ then PF(g) for the actual calculation of the gtablility
limite. . -

The inviscid solubtions Py and 9, were obtained as power

series in o° as Tollows (section B of reference 8):

13
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. o0 . )
(Ple; a'e’ Cs Moa) = (w - ¢) Z u?nh'an(y; ¢ Moe) 2.7)
n=0 .

'q>2<y; 2, o, Mo w (v - c) Z Enkam_l(y, c, M, ) (2.8)

110

vhere for n 21

y : J 5
T W - C)
h2n<y3 c, MOE>= [( E-M ]dy g__._.___%_e(y; c, Moe)dy

and.

and for ngl

(w-0)2

k&n+l(y3 S Moe)"fy [ Moe]q"ry(w- o) Lo 1(3’: c, Mg )dy (2. 10)
F1 U3

v

and

v
2 T 2
oo o) [ [ ]

7 W - c)

1
The lower limit in the integrals is taken at the surface merely
for convenience. When y >y,, the path of integration must be
taken below the polnt y =7 c in the complex y-plane. The power
series in of are then uniformly convergent for any finite value
of a.

1L
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At the surface, the inviscid solutions are readlly evaluated

(Pll = Wl 3
Pyt =]
} ) (2.11)
Ppy = O
' 1 2 o
Py’ = ';@1 - ¥ °) )

At the "edge" of the boundary layer, the inviscid solutions axe .
most convenlently expressed as follows:

c) }: a.gnﬂen(c , M°2> ]
n=0

(1

P12

8
]

o |

. »

= (2 °)Z“ AL MO)
n=0

o : N '1 “M 2(1 - )21 . - p(2a2)
i t _ _ -~ o - ° 2
(Ple = (l C) [ (l - 0)2 ];. & On-l c, MO )
1 - M2 - c)e]
*=(1-c) , M2
Ppp c_[ o Zaanx,mc M 2)

15
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where . ‘
2 . 2 7
Hy (65 M2) = non (Fas ©5 M, )
H, = 1.0
2
LR G Moe) = k2n+l(y2; c, M, )
- T 2 21t ' (2.13)
o 1 -M, (l - ¢c)=| o > .
i o, M) = n '(&2; o, M, )
2n-l o (1 - C)Q on
u 2 o1
o 19 - ' )
L (1 -¢c)2 :
E, = 1.0 )

With the ald of equations (2.11); the expression for E{d,, c, MOE)
can be rewritten as follows:

‘ w, Ho '+5CP22 N K
o o %) - Ay ——CE )

vy (B! + POp) + ;E (P12" + Borp)

where

]

Me) = 2 (yz i yl) -1

(2.15)

The relstion (2.2) betwesn the phase velocity and the wave length
1s brought into & form more sultable for the caleulation of the .
etability limits by making use of the fact that for real velues

of ¢ the imeginary part of E@, c, MOE) is contributed largely

16
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by the integral Kl(c, Mog). (The procedure to be Followed 1is

ldentical with that used by Lin in the limiting ‘cese of '
the incompressible fluid (reference 5, part III)..) Define the
function ®(z) by the relation -

kN

3(z) = TTF (2.16)
Then,
_ 3 . (a+ 1v)
o(z) = T () 1+ a{u + iv) (2.17)
where
'nTl'G CPQE’ + queé .
e+ ivae 14 (2.18)
Ty \Pp' + BP0
Equation (2.17) is equivalent to the two real relations ‘
(1 + A)v
& (z) = :
) = 73 a2 ¢ AZR (2.19)
@r(z) - (1) (1l + an) + Ave (2.20)
(1 +2)2 + 232 ] -~

The real and imaginary parts of ¢(z) ave plotted against z in
figure 9.

The dominant term in the imaglnary part of the right-hand side
of equation (2.18), which involves K, {e, MOE), is extracted by means
of straightforvard algebraic trans_nf:orma'bions. Relation (2.18) becomes

7
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v e 6 I\ ( - ol 1-02 N\ & En/ i
G+

1+ iv= T—— ] " ty - @ - (2.21)
1 1 ® N Vl M 2(1 - =
| 2n.
| S ) BT G5 )
1 . o2 ) (1 -¢)2 . ol /
whore
Fy= Hy
and for h_;fB - , .
M=Ky -5 (2.228)
Moo LE - T, S (2.220)
When c¢ -ig real,
wle
h) ﬂl—- I.P. Kl
Ty

for those values of « and c¢ that occur in the stablility caleulations.- (This approx:lm’%ion is
Justified later in appendix A,) The imaginary part of the integral. Kl(c, MOE) is readily compubed.
Tt 1s found thet

. COtT *ON NI YOVN :
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IP ch,Ma)z.jn( )S{dy -—)]

=-1t-——--.-——-(—-—---—-- ‘ (2.23)

(=)2N

Now A{c} 1s generally quite small, therefore ®;(z) can be
taken equal to v(c) and &,(z) can be taken equal to u as a
zeroth approximation., From equations (2.19) and (2.20), when ¢

is real
o le T w.,B . op
@iQO)(;(O)) N 1 f 5 c' _ 'c (2.2%)
B! . (wc ) ¥e e

L) g (9 (L0) (2.20)

By equation (2,2h), z(O) 1s related to c with the aid of figure 9;

and by equation (2.25), 1'1(0) is also related to c¢. The guantity eR
is connected with ¢ by means of the.ldentity

: v N3
‘6R = —iC <”’l> o (2.26)
w11+ M3\ e ’

and the corresponding values of o &ar®e ob'bained from equation (2.21)
(slightly transformed) by a me'l;hod. of successive approximation.e

. 19
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Thus,
w'e TS R
I (1-G232) © {1 -c)® G_Z o —Z aenﬂweml
s - _ (2.27)
(‘,Ll-L) l-z m%;\[lfbiég(l -0)" (ﬁlpi Gam.len.;._'D
n=2 - . (1* 0)2 n=1
where

w,tc . Ky o
L= 2= RP (K +—2-)

(The symbols My and N-k .now designete tho real parts. of the
integrals M and Ny.) ‘The iterstion process is begun by taking
a suitable initial value of o on the right-hand side of squa-
tion (2.27). The methods adopted for computing tueso integrals

when the mean velocity-temperature profile is lmown are described
In appendixes A to C,

For grester accurecy, the values of z and. u for a given
real value of c¢ are camputed by successive gpproximations. From
equations (2.19) and (2.20),

.'Qi(é"'l) (z(n+l)) = | .(l'+ Liv- | (228) .
- (1 + Nu(n))(' + 2542 .
( ' (1-+'A.u(n))2 + KEVQ A 2
4 n+l). - Qr(n-t—l) (z(n-:-l)) _ ' _ . v (2.29)

(1 + ) (l + Xit(n)> 1+ auln)

The velue of v is always approximated. by relation.(e.Eh),

. Curves of wave mumbor agsingt Reynolds number for the neutral
dlsturbance have been caleulated for 10 representative cases
(fig. 4), that 1s, insulatod surface at Mach numbers of 0, 0.50, \
0.70, 0.90, 1,10, and 1.30 and heat transfer across the solld surfsace

20
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at a Mach mumber of 0.70 with values of the ratio of surface tempera-
ture to free-stream temperature Ty of 0.70, 0.80, 0.90, and 1.25.
{It is Pound more desirable to base the nondimensional wave nueber and
the Reynolds number on the momentum thickness 6, which is a direct
measure of the skin fricktion, rather than on the bowndary-layer thick-
ness &, which is scamewhat indefinite.)

In figure 5 the minimm criticel Reynolds mumber Reor , or the

. min
gtability limit, is plotted egainst Mach number for the Insulated
surface; and in figure 6(a) P.ch ‘is plotted against  T; for

_ min
the cooled or heated surface at a Mach number of 0.70., The marked
stabilizing influence of & withdrawal of heat from the fluid is
clearly evident., Discussion of the physical significance of these
numerical results is reserved untll after goneral criterions for
the stability of tho laminar boundary leysr have been obbtained.

3. DESTABILIZING INFLUFNCE OF VISCOSTTY AT VERY LARGE REYNOLDS
NUMBERS; EXTENSION OF HEISENBERG'S CRITERION - '
PO THE COMPRESSIBLE TLUID '

The mumerical calculation of the limits of stability for several
particular cases gives some indicabion of the effects of free-streanm
Mach number and thermasl conditions et the solid surface on the sta- -
bility of the laminar boundary layer. It would be very desirable,
howsver, to estgblish general criterions for laminar instability.

For the incomproessible fluid, Helscenboerg has shown that the influence
of viscosity 1s generally destablilizing at very large Reynolds
nwmbers (reference 1). EHEis criterion can be stated as follows: If
a neutral disturbance of nonvenishing phase volocity and finlte wave
length exists in an inviscid filuild (R—>®) for a glven mean veloclty
distribubion, a disturbance of tho same wave lengbh is mmstable, or
gelf-excited, in the real fluid at vory large (but finite) Reynolds
muboers. ’

The same conclusion can bo drawm from Prandtl’s discussion of
the enorgy balance for small dietirbances in the laminar boundary
layer (reforence 12). : S

Helsenberg's criterion is established for subsonic disturbances
in Yhe laminar boundary layer of a compressible fluid by an argument
quite similer to that which he gave origlnally for the incomprossible
fluid end which was later supplemented by Lin (reference 5, part ITI).

21
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At very large Reynolds numbers, the relation (2.1) between the phase
velocity and the wave length can be Gcrsiderably simplified. When M
1s finlte and ¢ does-not vanish, fz}>> 1 -at large Reynolds.
numbers.  The essymptotic behavior of the Tistjene funotion F(z)

ap  jzl--d 38 given by (reference 5; pert I) .

S oL/t
(71~ %) Fla) = ——= (3.1)
L —~— C
Ve
and the relation (2.1) becdmes o
i /4
( I:‘ - yc) (m, C, MOE) }!11(0.':, C, M ) (3'2)
1/ R
o~ C
Ve
' 2 - o 1l
~vhere Efa, c, .M, is given by oguation (2.14).
© Suppose that a neutra'l disturbance of nonvenlshing weve
% : L2 ) -1 S
nwnber gy =_.i-3t- and phaee veloclty >l - i;f— existe in 'bhe
.

inviscid fluta ( 'Limiting cagse of an infinite _Beynolds num:ber) "The
phase velocity ¢ . 1s a conbinuous function of R, and for a dis-
'burbanue of glven wave number % the vaelue of. c¢. at very large

. Reynoui;—* numbers will di*’ier fram' c,° by a smald increment Ac.
8

Both sides of equation (3.2) can be doveloped im a Taylor's series
in "Ac, and an expression Tor Ac can be obtsined as follows:

' o
: Lo 2\ L : 2) 2 ;
El(d‘.’ C. MO ) = El(?’ﬂ’ GS"Mo- (é';‘"’> JAY IR S
CB)G'S . ’

_eni/k o : -
2 [1 4+ 0(2c)] - - (3.3)




NACA TN No. 1360

The boundary condition

q)22l (a's; ) Moe) + 35(922 (a's:' Cqs Moa) = 0 (3.4)

must be satlisfied for the inviscid neutral disburbance, and the

functien El(cas, Cas M02) vanishes (equation 2.14). Recognizing
that .

(3.5)

From ‘equation (2.14),

(3.6)

d [ 2 2
= {o Ha , c, M")+Bo c, M ]
( BEl) = - Osz{ac 22 ( 82 7 7o ) 22 @B, > o ) c=Cgq
d - .

23
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By equations (2.12) end the bowmdary comdition {3.4), the gquantity (—a-c—]') ig evaluated as follows:
) Gy Ol '
/. \ 8’

BEl)
dc OgrTy

2(1 Cq

o (oD o AT 30 e = WT D)

Ty

(: -csfga.f“”ﬂgn(cs,mfj N -Vl-moa(l-cs)‘*;ms&ﬁzn__l (ca,moa)

where the primes now dencte differentiation with respect to c.. Forr-small valuss of" cg and @y, ‘the

&: .
gquantity- ( ]> i8 given aprroximately by the relation

¢ ﬂ,% | |
BB\ cE,E 2= ML - o | | |
<§£_> T [ ( +Kl (s’ Mo2
. Cgs Oy I- (1 -c ) V Moa(l - c

~~
w

(3.8)

23—
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and the expression for Ac is

T, ag Y1 - M2(2 - oY Nk

R _5 2 - MB(1 - 05)2

%_';;;; e c- °a)3 +a \/1.- Moe(l - cs)g Kl'(cs, Moe)

(3.9)

Evalvation of the integral Kl@ R Mf) yields the following resulbs

56wk )
K, {c, M%) = - + —{ — (In ¢ ~ i) + O(1)  (3.10)
;l. o) wl_'c -(Wc:)3 dy \T =

_ | ' . |

Since the gquantity F—"—- (%L} vanishes (reference 8), differ-
: ay w=Cg '

entiation of equation (3.10) gives

. T 3 p 2 a /w! ] . N -
VAN YO S A LN {..(..)] ) 1n o ~1x)40(2)
| 1 (cs o) Wl‘,c52+ o ("’c')3 ay \T 'w-—-cf/c nc(‘l.cs n)+

(3.11)

Thus, K_L'<cs, Mog) is approximately real and positive for small

1
values of c,. With ¢y > 1 - ik I.P. &c mwat also be positive
' o]
(equation (3.9)); therefors, a subsonic disturbance of wave
lengbh ks ¥ 0, vhlch is neubrel in the inviscid campressible

fluid, is self-exclted in the real compressible fluid at very large
(but finite) Reynolds numbers.

25
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In reference &, it was proved that a noutral subsonic boundary-
layer dlsturbance of nonvanishing phase velocity and finlte wave
length exists in an inviscid compressible fluld only if the quan-

Y 1
tity -q'-- pé}- vanishes for some value of w> 1 - —, If this
dr\ dy M

(o]

condition is satisfled, then self-exclited subsonic disturbances
also exist in the fluid, and the leminer boundory layer is unstable
in the .limiting case of an infintte Reynolds number. By the exten-
slon of Helsenberg's criterion to the campressible fiuid, i1t can be
geen that, Tar fram stabilizing the flow, the amall viscosity in
the resl fluld has, on the contrary, a destabilizing influenco at
very large Roynolds numbers. Thus, any leminar boundary-layocr flow

in a viscous conductive gas for which the quanbity :—-;_ (pg) vanishes

1 )

for some valve of w> 1 T is unstable at sufficiently high (but
- _

finite) Reynolds numbers.

Unlese the condition i— éd-“?-) =0 for some valug of w> 1 - —Jl—
ay \ dy M

o]
1s satisfled, all subsonlc disturbances of finlite wave length are
damped in the limiting case of infinlte Reynolds number, snd the
invisecld flow im steble, Since the offect of viscosity 1s des-
tabilizing at very large Reynolds numbers, however, a laminar
boundary flow that is steble in the limit of infinite Reynolds
number is not necessarlly stable at large Reynolds numbers when the
viscosity of the fluid is considered. %goo fig. ¥(1).) In fact,
for the incompressible fluid,Lin has shown that overy leminar
boundary-layer flowv is ungtable at sufficiontly hilgh Reynolds
2

numbers, whethor or mot the vorticlty gradient 2w vanishes (refer-

- dya
ence 5, part III). TIun order to settle this question for the com-
prossible £luid in goneral berms, the relation (2.1) betweon the
complex phase velocity and the wave lengbth at large Reynolds numbers

must now be studied for flows in vhich tho quantity %—-y Z’-—;

doos

not venish for any valus of w S 1 =~ —:E-—
o]

26
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‘%, STABILITY OF LAMINAR BOUNDARY LAYFR AT LARGE REYNOLDS NUMBERS

The neutral subsonic disturbance marks a possible "boundary"
between the damped and the self-excited disturbance, that 1is,
between stable and unstaeble flow. Thus, the general conditions
under which gelf-exclted disturbances exlat in the laminar boundary
layer at large Reynolds numbers can be determined from a study of
the behavior of the curve of o« against R for the nsubral
disturbances, When the mean free-stream velocity 1s subsonic (M0< J) s

the physical situation for the subsonic disturbences at large
Reynolds numbers is gquite similar to the analogous situation for
the incompressible fluid. The curve of o against R for the
neutral disturbences can be expected to have two distinct asymptotic
branches that enclose a region of instability in the «,R-plane,
regardless of the local distribution of msan velocity and mean
temperature across the boundary layor. When the mean free-stream
veloclity 1s supersonic (Mo > l) the situation is somswhat dif-

ferent; wnder certain conditions (soon to be é.efineg.) a neubral

or a self-exclted subsonic disturbance c>1 - L-J;—— cennot exist
(o]

at any value of the Reynolds number. For this reason, 1t 1s more

convenlent to study the case of subsonlc and supersonic free-stream

veloclty seperately. : '

a. Subsonic Freo-Stream Velocity (Mo < 1)

'The asymptotic behavior at large Reynolds numbers of the curve
of o against R for the nbutral disturbances is detormined by
the relations (2.19) to (2.22) betwoen @, R, and ¢ for real
values of c. For small values of « and c, +hese relations
are given approximately by

. ' ‘1’2 t '
R -
1 W' \ o :

u = 0,(z) (1.2)
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1.76
o b7

S (’:’)3("’1')2 (4.3)

wyfe 1 -
&= e 1.M201 - )2 (h.4)
Tl n o . ) - _

A8 R——¥o,  either z s o or 2z ranains finite wvhile . ,
both o and ¢ approach 0. These two possibilities correspond
to two asymptotic branches of the curve of « sgainst R.

brefichs« If 2z remafns finlte as R—> e, then c -—30;
and by equation (k4,1), @i(z)-—-}O. Therefore, z-—»2.29 while
u-—32,29 (fig. 9). From equations (4.3) and (4.4). along the
lower branch of the curve of against R for neutrel stability

oo ()6 - )" = | (4.5)

1.24 4

T
c =2.29 X o (k.5)

wl'_\JJ. - M2

and «—30 at large Reynolds mumbers (fiz., (1)),

Upper brendh.- Along the upper branch of the curve of o
agalast for neutrsl stadility, 2z -—3w and

rwy fe '1'02 a /w\1 1 Wyt
R € FUACY ) e i
c W0 VQZS 2«.6-'- c3

c

$4(z) = -

28
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o i a /!
while u-—>1.0 (fig. 9 and oguation (4.2)). TIf the quantity E =

does not vanish for any value of w > O, <then by egquation (k. 7)
¢ must approach zero asg z—>®, Along this branch,

()~ G- “Qs/ (4.8)
2“2,_[, 5.2k 2 6 : !
=S 1}
cw 1 o (k.9)

\{ 2
wl' 1l - M0

and. a-=-»0 ab large Reynolds numbers (fig. 4(1)).

t
On the other hand, if 4 venighgs for some value

ay\? .
" of w=.cg >0, then by equation (4.7), ¢—>cg &and o~ O

oth z and R approach . Now,
s w‘> [ > > > n 052

— ] = ooy imes ——f qu— N + e &
6-3'(;3 4 d:ré{;l ¥y ;{;‘x 2(10’ N2

W=C
dE A .
If ?C—D does not vanish (see appendix D), then by equa~
L .

“tions (L.4t) and (4.7), along the upper branch of the ciwve of «
against R for the neutral disturbances, .

29
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(s ) M C(h.11)

2“2,1; o. 21-1- d.2 ()l c - CB)Q

¥ 2(1 - c)2 | (4,12)

end c-—3c £ 0, A ;! 0 at large Reynolds numbers.(figs. 4(k)
and 4(1)). Ir [ <> vanishes, the relation (4.11) is replaced

by

02 e Foo® (20,2
| =)

which reduces to the relation obtalned by Lin in the limiting case
of an incompressible fluld wvhen MQ-—--)O the solld boundary is

insulated, and +' = 0 ‘for some valus of w = oy > 0. (See equa-’
tion (12.22) of reference 5, part III.) :

(4.13)

!
If the quantity 9'—-(‘1—) venishes at the solicl boundery (that

is. for w=0), it can be shown from the equations of motion

{appendix D) that (—--)] 1s always positive - except in the

liniting case of an incompresaible fluid, For ecmaJ_l values of ¥,
t o]
the quantities g-; (g;) and -;g— are both positive and increasing.

30
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t , .
For large values of ¥y, however, ;--—90, physically; there-

4

' . t .
fore %— must have a maximum, or -Z'—y(;—) = 0 for some value

of w>0, and this case is no different from the general case
tresated in the preceding paragraph.. In the limlting case of an jincom-

. ‘ c
pressible fluid, when W' vanishes st the surface, wc“= wli'f. S
S 2(w ')
since wl" "' always vanishes in this case. From equation (4.8)

the relation between @ and R along the upper branch of the
neutral stability curve is therefore

b ) 1 2 -
R. z. (:::2 (w1iv 5 BT _O-hlh-)

which is identical with equation (12.19) in reference 5, part IIT,

I t
Thus, regardless of the behavior of the quantity g:y. -;L

regardless of the local distribution of mean veloclty and mean
temperature across the boundary layer - when My < 1, the curve
of o against R for the neubral disturbances has two distinct
branches at large Reynolds numbers. JFrom physical considerations 5
all subsonic distwrbances must be damped when the wove length is
sufficiently small (o large) or the Reynolds number is sufficiently
low. Consequently, the two branches of the curve of o against R
for the neutral disturbancés must Join evenbually, end the region
between them in the -«,R-plane is a region of ingtability; that is;
at a given value of the Reynolds number, subsonic dlsturbances with
wave lengths lying between two critical values )"l and >\.2 (cal

and me) ‘are self-excited. Thus, when M, < 1, ény laminar

boundary-layer flow in a viscous conductive gas 1s wmetablo ab
sufficlently high (but finite) Reynolds numbors.,

The lower branch of the curve of .¢ agminst R for the neutral

4
disburbances ls virtually unaffected by tho distribution of %y—(g——)
across the boundary layer, but for the upper branch the behavior of
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' a /w d [+
the quantity =—{-—] 18 decisive. When —=(-—) =0 for same
dy \T dy \T
vaelue of ~w = ¢, > 0, the neutral subsonic disturbance passes
contimuously into the characteristic inviscid disturbance c=cg
and o = ay a8 R—>cw., This result is in accordance with the

results obtalned in reference 9 for the inviscid compressible fluid
and 1s in agreement with Helsenberg's criterion. In addition,
. 2z
all subsonic disturbances of finite wave length A > Ay = = (and
3
nonvenishing phase velocity 0 < ¢, < cs) are gelf-oxclited in the
limiting case of infinite Reynolds mumber. On the other ham,

H .
when % g—) ‘does not vanish for any value of w> 0, then

except for the "singular" neutral disturbance of zero phass velocity
end infinite wave length (c = 0 and « = 0), all disturbances

are damped in the inviscid compressible fluld. This singular
neutral disturbance can be regarded as the limiting case of the
neutral subsonic disturbance in a real compressible fluild ag R-—yo,

b. Supersonic Free-Stream Veloclty (Mo > l)

When the velocity of the free stream 1s supersonic, the sub-
sonlc boundary-layer disturbances must satisfy not only the differ-
entlal equations and the bowmdary conditions of the problem bub

also the physical requ:lremen"b that C.. >1- %'I- The asymptotlc
5 )

behavior at large Reynolds mumbers of the curve of o against R

for the neutral subsonic disturbances is determincd by the approxi-

mate relations (4.1) to (4.4), with the additional rostriction

that ¢ > 1 --I%I» A8 c—31 - —;;—, o—3>0 by equation (L.L4);

o o)
'bhere’f'or_e R—>o» by equation (4.3). The corrosponding value (or
values) of z is determined by equation (k.1) as Tollows:

1
o -2) |
@, (z) = v{c) = V('%)’ e il E"(l) (k.15)
\ M Ty (w')3 &y \T w:c.—.l--.l- _
' My
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. ;
Now fram physical considerations, % (—%—) < 0 fTor large

LY

1
veluss of y. Therefore, if %(g—-) = 0 (changes sign) for same

!

value of w= ¢, > 1 - 9—'—-, - ‘then, in general, e (x >0

5 i ay \T N

Q
1=
M, .
e -
and 85(z) , <O (equation (k15)). From figure 9; 1% cdn De
C=l-——

. e
goen that in this case there is only one value of 2z (%3, say)
corresponding to the wvalue of Qi(z) given by equation %ll—.15) :

From equations (4.2) to (L.4), along the lower branch of the curve
of a ageinst R for the neutral distwrbances, -

1.767., \2, 3
T W Z 1
Rz (2) 75 il (4.16)

R l \ 3 (e 1)
| 1-ﬁ9
- . 0 - )
- 1 ’-——
' ———
" ( -M0> o d
o o~ \0 -

1 .
Tyvy ( i ﬁ:) (. 21)

, 1
and c—31 - R at large Reynolds numbers (fig. 4(k)). The upper
. . o _ .
branch of the curve in this case is given by equations (k.11)

= o ,
and (4.12), or by equations (k4.13) end (%.12) if [9——(1’-'-}
a7° \¢ /4,

vanishes, with c——>cg > 1 - and a—>ay ¥ O.
o)
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! 1
Ir a(x vanishes for w= 1 ~ <=~, then z-—>c0 as R-9®
ay \T : M,
along the upper branch of the curve of o against R for the
wy! '
1

neutral disturbances, and 04(2z)— ., Now a=—3>0

VEcn—-—ﬁ 3 _
c
a8 c—~—31l - -B-dji-— in this case also {equation (%.17) with W = 1.0)

o
go that

2(n )" uf 11

ep ety 10 [l AN )2 oo

Alung the lower branch of the curve of « against R at large

Reynolds mwnbers, &, R, eand ¢ are connected by equatiome (L.16)

and (4.17), with zy = 2.29 and w, = 2.29. In spite of the fact
a [fw'

that ==l =—}=0 for w= 1 - ..1_., a neutral sonic disturbance
dy \? M, .

l v
c=1- E—-) of finite wave length does not exist 1n the inviscid
7o

(k.18)

(o]

fluid unless X, (c) = z -4 2 |ay 1o positive. (See
fe} (‘W’ = 0)2 '

gection 10 of reference 8.) Calculation shows that Kl(c) is almost

always negative (equation (3.11)); therefore, in general, the sonic
disturbance of infinite wave length (a = 0) with constant phase
acrogs the boundary layer exists only in the inviecid fluid (R-—> ).

d wi .
If — |—] does not vanish for any value of w> 1 - -]-'—-, it
dy \T = M,
t
is certain that [i- (F—)] 1 < 0 and by equation (k4.15)
3y W=Cmle —
o}
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@i(z) . >0. When v];-]‘__ <.O..58O (approx.), there are two

O -M’o

values of 2z (z,) and z3, 'say, with Zg > Zp) ccrresponding to

the value of &;(z) given by equation (k.15), (See fig. 9.) Along

the two asymptotic branches of the curve of « against R fox-the
neutral disturbances, o, and c¢ are cormected by relations

of the form of egquations (11- 16) and (4.17), with z and u replaced
by zp emd wup, respactively, along the lowsr branch and by Z3

and u3 , Trespectively, along the upper branch., At a glven v&lue of
the Mach number, the value of v 1 is controlled by the thermsl condi-

l—_-—--
M, . .
tions at the solid surface. (See ssction _6.) Wheh these conditions ars
such that v 1 = 0.580, then Z- = Z_, and the two ssymptotic branches
. . J
1 M
(o]

of the curve of « against R for the neutral disturbences coin-
cide. When v 20.580 (approx.), it is impossible for a

l-a—-—

M,

neutral or a. self-excited supsonic aisturbance to exist in the
laminar boundary layer of a viscous conductive gas at any value of
the Reynolds number, In other words, if v 4 2.0.580 (approx.),

. . 1___ - . !

. My

the laminsr boundary layer is stable at all values of the Reynolds
number, (Of course, in any glven cage, the critical conditions
boyond which only damped subsonic disturbancesg exist can be cal-
culated more accurately from the relations (2.28) and (2.29).
See section 5 on minimm critical Reynolds mumber.)

The preceding conclusion can alsc Dbe deduced, at least qualite-
tively, from the resultes of a study of the energy balance for a
neutral subsonic disturbancs in the laminar -boundary layor. A
neutral subsonic disturbance can exist only when the destabilizing
offect of viscosity near tho solid surface, the damping offect of
viscosity in the fluld, and +he enecrgy 'bz-ans:f‘er between mean flow
and disturbance in the vicinity of the immer "critical layer" all
balance out to give a zero (average) net rate of changs of the’
ocnergy of the disturbance. (See Schlichbing's discussion for -
incampressible fluid in referenco 4, ) In reference 8 it is showmn
that the sign and megnitude of the phase shift Jn w¢' +through
the inner "critical layor" at w= c is determined by the sign
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and.magnitude of the guantity [ (;—-] « The corresponding {'
W=C .
epparent ' shear stress To * = -p* u*'v*' which is zeyo for w < ¢ In the

inviscid compressible fluid is given by the following expresslon

for w>c (reference 8),
[ ( )] (4.19)

-p*xfux %
jj»pj(%ﬂ Eﬂ

cr !
If the qnantity- [EL-<5L)] is negative, the mean flow absorbs
energy from the disturbance; if [é (;i)] is positive, energy
: dy V=C

passes fram the mean flow to the disturbance. In the real com-
pressible fluld, the thickness of the inner critical layer in which
1

(5)”
v

the phase shift' in w*' is actuslly brought aboult by the effects

of viscous diffusion (of the quantity p%?) through this layer.

the viscous forces are important 1s of the order of

As showm by Prandtl (reference 12}, the destabilizing effect
of viscosity near the solid sififace 1g 16 shift the phase of the

"frictional® component ufr*' of the disturbance velocity agminst

the phase of the "frictionless" or "inyisoid?'caméonenb g pe*

in a thin layer of fluld of thickness.of the order of

By continuity, the assoclated normal componsent vfr*f_-is of, the.

. (Tt wes shown_ in part 1 of
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reference 8, that for large velues of oR +%he "frictional®
compongnts of the disturbance also satisfy the conbinuity rela-
uH ! Syt

tion. s 4 =— = 0 in the compressible fluid.) The carre-
Ox* oy * : .

sponding apparent shear gtress . T1¥* = -pl* u*?y¥' is ziven by the

expression

® . TS | -2 a
I Y e R ] (k.,20)
1 po (o} — U
po* n ¥ A R :

Yy
But from equations (2,11)
u,,  *! p Y
inv 1 . 1 \
—— 18 f e ~ Pt = — o (k.21)
u_¥ 4 Tl - Mo c c

(k.22)

Since the shear stress assqci’atéd Wi"i:h the d.estabiiizing effect
- of viscoslty near the solid surface and the shear stress near the
critical layer act roughly throughout the same region of the fluvid, the
ratio of the rates of cnergy transferred approximetoly T* -g:-;r dy)
%

. . 0
by the two physical processes is
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. I' 2 -
B % * . -
Eq* T * 2 Tl ("c')S B

= -;- iv(c) | 23/2
whe:i'e

23201—- Z

V. (wl,)a

1 N
If the quantity %—5 (%—) is negative and sufficie;ltly large
~when W= Cqs B8y, then the rate at which energy is absorbed ‘by-

the mean flow near the immer "criticel layer" plus the rate at which

the energy of the disturbance is dissipated by viscous actlon more

than counterbalances the rate at whlch energy passes fram the msan

flow to the disturbance becauss of the destabllizing effect of

viscosity near the solid surface. Consequently, a neubral subsonic

disturbance with the phase velocity ¢ =>= ey does not exist; in

fact, 21l subsonic disturbances for which ¢ > ¢y are damped.

When Mo* <1, there is always a range of values of phase veloclity
B %

0Lck S o, for vhich the ratio EE‘; , glven by eq_uation (4.22),

is small enough for neutral (and self-excited) su'bsonic disturbances
to exist for Reynolde numbers greater than a certain critical value.
Vhen M, > 1, however, because of the physical requirement
that ¢ > 1 - =-S5 0, the possibility exists that for certain
M, : : .
t
thermal conditlions at the solid swrface the quantity [-g;’— (%—)]

W=C
. B *

is always sufficiently large negatively (and therefores E%l ig
1
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sufficiently large) so that only damped. subsonic disturbances exist
at all Reynolds numbers, OF course, if —-—(——) vanishes for-some

value of w_}_i - -;in, it is certain that v{c) ¢ 0.580 for some

0

range of values of the phase velocity' 1- -;T <c<e or In that

case, neutral and self-excited subsonic dis'burbances al'ways exist
for R >R, and the flow is always unstable et sufficiently
Tmin

high Reynolds numbers, in accordance with Helsenberg's criterion
as extended to the compressi ble fluid (section 2).

A-discussion of the significance of these results is reserved
for a leter section (section 6) in which the behavior of the quan-

tity %-y -;. will be related directly o the thermal conditions

at the SOlid. surface and. the free-gtream Mach number.
5. CRITERION FOR THE MINIMUM CRIILICAL REYNOLDS NUMBER

The obJect of the stability enalysls 1s not only to determine
the general conditions wnder which the laminar boundary layer is
ungtable at sufficiently high Reynolds nuwnbers but also, if possible,
to obtain some simple criterion for the limit of stabllity of the
flow (minimum critical Reynolds number) in terms of the locsl
disgtribution of mean velocity and mean temperature across the
boundary layer., For plane Couette motion (1insar velocity profils)
and plane Poiseullls motion (parabolic velocity profile) in an
' incompressi‘ble fluid, Synge (reference 13) was able to prove
rigorously that a minimmn critical Reynolds number actually exists below
which the flow is stabls. His proof applies also to the leminar boundary
layer in an incampressible fluld, with only a slight modification (refer-
ence 5, part III). Such a proof is more difficult to give for the laminar
boundary layer in a viscous conductive gas; howover, the existence,
in gonseral, of a minimum critical Reynolds mumber can be inferred
from purely physical considerations. A sbtudy of the energy balance
for small dlsturbances in the laminar boundary layer shows that the
ratlo of the rate of viscous dissipation to the rate of energy
transfer near the critical layer is 1/R for a disburbasnce of
glven wave length while the onergy transfer associated with the
destabilizing action of viscosity near the s0lid surface boars the

ratio 1/11—2- to the emorgy transfer near the critical layer. Thus,
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‘the effects of viscous dissipation will predominate at sufficiently
low Reynolds nvmbers and all subsonic disturbances will be damped.
The two distinct asymptotlé branches of the curve of a against R
for the neutrsl disturbances at large Reynolds numbers must Join
eventually (section 4) and the flow is stable for all Reynolds
nubers less then a certain critlcal value. . .

An estimate of the value of Ry Tgin , vhich will. serve as &

goability crilterion,is obtained by taking the phase. veloci'by c
%o have the maximum possible value c¢, for & neutral st_:.bepnic
disturbance, that is, for ¢ > ¢y all subsonic disturbances are
damped. This condition ie very nearly equivalent to the condition
that oR be a minlmm, which was employed by Lin foxr the case of
the incompressible fluld (p. 285 of reference 5, part III). The condi-
tlon c= e ocours when {? (z} is 2 maximum: that is, vhen <I>_i(z) =0.58,

= 3.22  and @r( ) = 1.48 (fig., 9). The corresponding valus
oi‘ c = o, can be calculated from the relatlions (2.19) to (2.22).

Neglec’bing terms in A2 (A is usually very small) and taking u=21.50
_ glves

o,(z) =[1 - &alef] v(o) . (5.1)

vhere

wi'e W' '
(¢) = - ' .2
.'vc ﬂ__Tl' [(w)3dy<> (5.2)

and

(e )
[+

x(c)

It -is only necessary to plot the quantity (1 - 2\)v agalnet—0a
for a given laminar boundary-layer Tlow and find the value of c = ¢
for which (1 - 2A)v = 0.580, The correspond.ing value of oR is
determined from the relation

(o]

Lo
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2 - PEET () () o0

and this value of dR im very close to the minimm valyp of doR.
A rough estimate of the value of o for ¢ = ¢, is giwen by the

following relation (eguation (2.27)):

o = Vl'_ca\fl B GRS M (5.5)

This estimated value of o ig, in general, too small, The
following estimnte of R is obtained by malcing an approxi.mate

allowance for this discrepancy and by taking round numbers:

25‘ [T(cb)]l‘Ys wl' . (5.6)

R
Crmin col"dl - M‘_;,E(l - co)2

or

TR,

By . . (5.7)
win chl - M, (1 - co)e '

For zero pressure gradient, the slops of the wvelocity profilé &t

o
the surface SE is glven very closely by (appondix B)

A

L1
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. <5'>1 (a“

),

- 0.332"
Ty
Therefore
s \qL.T6
T
R, =l ()] (5.8)
Crpin T

AJ 02(1 _ GO)EI

The expression (5.8) is useful as a rough criterion Tor the dependence
of Re on the local distribution of mean velocity and mean

Cl‘min
' temperature across the boundsry layer. It is immedlately evident

that By —bw when o,—>1 - . Whem [(1 - 2A)v] >0.5%,
Cx, nin MO c_l..!'_...
o

the laminer boundary layer 1s stable &t all valuss of the Re;gnold.s
number. (This condition ig an improvement on the stability condl-

tion v 2 0.58 (approx.) stated in section L.)
1-"“ . ' i
MO

In the following tables and in figures 5 and 6(a) the estimated
valves of Re given by equation ?WB) can be compared with the
“Tmin
values of Re faken from the calculated curves of tg ageinst Ry
Tmin -
for the noutral disturbances. For the lnsulated surface, the values
are - . : -

L2
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. Rg Rg
M % {c,) Cmin CTmin
© S (est,) {fig. 4)
o} 0.4186 1,0000 195 150
.50 . 400 1.0L08 170 136
.70 . 4600 1,0782 . 150 126
.90 L4850 ©1,1254 T 129 115
1.10 .5139 1.1803 109 10k
1.30 -, 5450 1.24k06 92 92

For the 'noﬁinsulate_d. surface when M_ = 0.70, the values are

R Rg
. Tl s 7 (Co) -ecrmin Crmin
’ (est.) (fig. k)
0.70 0.1872 0.7712 5377 5150
.80 2619 8716 1463 - 1440
"~ .90 .339% L9562 5k 523
1.25 ,5194 1,1:%k9 8 . 63

The expression (5.8) for Ro.. '~ glves the correct order of

. magnitude and the proper variation of the stability limit with Mach
number and with surface temperature &b a given Mach number.

The form of the criterion for the minimm critical Reynolds
number (equation (5.8)) and the results of the detailed stability
calculations for several representative cases (figs. 3 and 4) show
that the distribution of the product of the denslty and the

vofticity pg across the boundary layer largely detexrmines the

limits of stebility of laminar boundary-layer flow., The fact that
the "proper" Reynolds number that appears in the boundary-layer
stabillity calculations 18 based on the kinematic viscosity at the
inner critical -layer (where the viscous forces are important)
rather than In the fres stresm also enters the problem, dbut it
amounts only to a numerical and not a qualitative change when the
usual Reynolds number based on free-stream kinematic viscosity is
finally computed. Whether the. value of Recrmi for a glven

: n

k3
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laminar boundary-layer flow ls larger or smaller than the valus
—of Recr " for the Blasius flow, for exasmmple, iz determined
? min .

entirely by the distribution of pg'--; across the bowndary leyer.

If the quantity % \pg 15 negative and large neer the solld

gurface =80 thet the quantity (L - 2A)v(c) reaches the valus 0.580
when the value of ¢ = ¢, 18 less than 0.4186, the flow is rela-

‘ a aw
tively more stable than the Blasius flow., If tho guantity 5.} (pd-y-)

is positive neaxr the solid surface, so thet (1 - 2A)v(e) = 0,580

when w(or ¢} > 0,4186, +the flow is relatively less stable than

the Blesius flow. Thus, the questlion of the relative influence

on Recr of the klnematic viscoslty at the immer ‘critical layer
min

and the distribubion of pg"-;r acrose the bowndary layer, waich

remained open in the concluding discussions of reference 8, is now
settled, '

The physilcal basis for the prodominant influence on Recr

t ’ d- )
.of the distribution of p% across tho boundary layer is to be

found in a study of the energy balance for & subsonlc boundary-layer
disturbance (section 4). The distribution of p:-ff determines the
' AL

maximum possible value of the phase velocity ¢, or the maximum

possible distance of the immer critical layer from the solid surface
for & neutral subsonic disturbance. The greater the distance of,
the inmer critical layer from the solid surfacé,” tho greater
(rolatively) the rate of energy absorbed by the mean flew from tho
disturbance in tho vicinity of the critical layor {oguations(h,21)
and (%.22)). VWhen ¢, is large, thorefore, the enorgy balance’
for a neutral subsonic disturbance is achleved only when the
destabllizing action of viscosity near tho molid surface is rola-

1 3/2

-biv"ely large or, in other words, when = cé is large

and.._"bhe Reynolds number Ry, vwhich is vory noarly oqual to Rcrmin’

is’ correspondingly emall. On the other hand, when o, is small
and the imner critical layer is close to the golid swrface, thoe rate

Lh .
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at which energy is absorbed from the disturbance ‘near the critical
 layer is relatively small and the rate at which energy passes to
the disturbance near the solid surface, which is of the order

of ——--}——, is glso relatively smell for 'energ_;y 'balanée; conse-

Cl we——
UC

guently Rgn min is large.

6. PHYSICAL SIGNIFICANCE OF RESULTS OF STABLLITY ANALYSTS

&, General

From the results ovbai ned. in the present paper end in refer-
ence 8, 1t 1s clear that the stability of the laminar boundary
layer in a compressible fluld is governed by the action of both.
viscous and inertia forces. dJust as in the case of an incompressible
fluid, the stability problem cammot be undersbtood unless the viscosity
- of the fiuid is taken into eccount. Thus, vhether or not a laminar
boundary-layer flow is wmetable in the inviscid compressi‘ble
fluld (R—>o), 'bhat is, vhether or not the product of the density

and the vor’cici'by pd:;r has an extremm for some va‘Lue of w> 1 -i-,
. e
'bhere 1s always some value of the Reynolds number R, 'blelow L.

which the’ effec‘b of viscous dissipation predomlnates and the flow '
is stable. On the other kand, at very large Reyholds numbers the
influence .of viscosity is destabilizing., If the froe-stream
velocity is subsonic, any leminer boundary-layer £low is unetable
at sufficiently high (but finite) Reynolds numbers, whether®or not
the flow is stable in the ‘inviscid fi. uid. wb.en om.;y' the inertis
:E'orces are considered.

The action oi‘ the inertia forces is more decisive :E'or the
Bbability of the laminar boundary layer if the froe-stroan veloci ty
is supsrsonic. Because of the physical requirement-that thé rela-
tive phase velocity (¢ - 1) of the boundary-layer disburbancos

must be su'bsonic, it _o}_lows that ¢ > i --%—; 0 -:and :bhe duan-

d ) . n
tity [E‘Y-' (D%)] can be large onough nemmbively under certain

conditions so that tho sbebilizing action of the inertia Forces

b5
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neax. the inner critical layer {vhere w = ¢> 0) ie not overcoms
by the destabilizing action of viscosity near the solid surface.
In that case, undemped disturbances cennot exist in the fluid, .and
the flow ls stable at all values of the Reynolds mumber.

Regardless of the free-stream velocity, the distribution of
a
the product of the denslty and the vorticity pd-;j- acrogs the

boundary layer determines the actual Limit of stebllity, or the
minimm critical Reynolds aumber, for leminar boundary-layer flow
in a viscous conductive gas (equation (1,8)). Since the distri-

bution of pg'-;; acrods the boundsry layer in turn is determined by

the free-stream Mach number and the thermal condltions at the solid
surface, the effect of these physlcal paremeters on the stability
of laminer boundary-leyer flow ig readily evaluated.

b. Effect of Free-Stream Mach Number and Thermal Conditlions at
Solid Surface on Stability of Leminer Boundary Layer

The distribution of mean veloclty end mean temperature (and
therefore of pg ' across the laminar boundary layer in a viscous

conductbive gas 1s strongly influenced by the fact that the viscosity

- of a gas increases with tho btempersture. ( For most gases, u o i
(m = 0,76 for air) over a fairly wide temperature range.] When
heat is transferred to the fluid through the solid surface, the -
temporature and viscosity near the surface both. decrease along the
outward normal, and the fluid near the surface is more retarded by
the viscous shear than the fluld farther out fram the surface - as
compared wilth the ilsothermal Blasius flow. The velocity profile
therefore always possesses a point of inflection (whore W' = 0)
when heat 1s added to the fluid through the solid surface, provided
there is no pressure gradient in the direction of the mein flow.

a aw) W'

Since -~ p-—):-—- - w=—— the ﬁan'tit e d.x vanishes
dsr(dv T T e W G P& °

aw :
and pa-&- has an extremm at some point in the fluid, On the other
hand, if heat is withdrewn from the fluid through the solid sur-

face, % and -gﬁ- aro both positive near the surface and the
¥y

fluid near the surface is less retarded than the Ffluid farther .
TS
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out - as compared with the Blasius flow. The velocit‘y profile is
therefore more convex near the surface than the Blasius profills.

-As pointed out in section 11l of referehce 8, the influence
of the varisble viscosity on the behavior of the produc'b of the

densi 'by and the vortlicity pd—; can be geen divectly from the equa-

tions of motion for the mean flow. When there is no pressure
gradient in the direction of the main flow, the flui d acceleration
vanlehes at the solid swrface, or .

( [ (*au*] 0- | - (6.1}
oy* oy* ) ; .

a:_t;d.

Bau-; 1 I e m ® I
) 200-0E «
SFEA y* ay*lay*l Tl&y*lay*l

Thus, when heat is added to the i‘luid through the solid surface

(‘l‘l' < O) is positive, end the veloci‘by srofile is concave
1 _
" near the surface and possesses a ;polnt of 1rr£'lection for some value
Pz
of w> 0; when heat is wlthdrewvn from the fluwid <Tl' > o), o )
. . . g ot i . \ ue

is negative, and the velocity profile is more convex near the surface
than the Blasius profile

The behavior of the quantity L owF
| ' . T Jyx
3%

parallel to that of g—-—é- From egquation (6. 2) In nondimensional
y—\l. .

form,

k7
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L BEL e e

l . A

Differentiating the dynsmic eguations once and making use of the

a
energy equation gives the following expression for [—-—-; (—-—)]

(appendix D):

2 /. 3. ) 2
[.d.'._.e. l) = o(m + 1L)(y - l)Mo (wl) e 2(m + 1)2 W ! ( L3) (6.4)
GFENT/Y, T

' 2 )
Thus, for zero pressure gradient, [E__ (-Y->] is always positive.

*

. . ' s
Now, if the surface is insulated,the quantity [—g’;(g—) vanlshes,
ae fu a /w w! -
but —-—-(—-— >0 and —- (-—- and = both increase with
ay \T /4 ay \T T .

-t ' '
digtance from the solld surface. Since -;—r- >0 far from the solid

i . . !
. surface, —;I— has a maximum and %; Tl' vanishes for somes value
of w >0, IFf heat is added to the' fluid through the solid sur-
face (T g 0) -—(—-—) 18 already positive at the surface, and

2
a

gince E—-—- —-—)] >0, ‘the quantity Ey—(%’-) vanishes at a point
dy2 .y L .

in the fluid which is farther from the surface than for an insulated
boundary at the same Mach number (figs. 3(a) and (b)). Conme-
guently, the value of ¢ = Cy for which the function .
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'c P2 g fu
(1 - 2A)v(e) = - w(l - ) ~ee |reme = (--) reaches the
Ty w')3 dy \T o
value 0.580 is larger than the value for ‘the insulabed surface.

By equationt (5.8),. the effect of adding heat to the fluid through

the solid swrface is to reduce Rg orpy end to destablilizZe the
n

flow, as compared with the flow over an insulated surface at the
same Mach number (fig. 6).

If heat is’ ﬁthdram from the fiuld through the solid surface,
?
T,'>'0 and [%y— (%"-)] 18 negative, In fact, if the rate of heat
e 1
t

. . I w *
trangfer is sufficiently large, the quantity %;(F) doeg not

venish within the boumdary layer (fig. 3(b)). The value of ¢ = ¢,

for which the function (1 - @A)v(e) reaches the value 0.580 is
emaller than for an insulated surface at the same Mach number, =snd
by equation (5.8), the effect of withdrawing heat from the fluid
through the sclid swrface is to increase :Rec]_1 and to steblilize

the flow, as compared with the flow over an insulated surface at
the same Mach number (fig. 6). When the velocity of the free stream -
at the "edge" of the boundary layer 1s supersonic, the laminar
boundary leyer-is campletely staebilized if the rate at whilch heat

is withdrawn through the solid surface reaches or exceeds a critical
value that depends only on the Mach mumber, the Reynolds number,

and. the properties of the gas. The ceritical rate of heat transfer:

1 .
is that for which the quantity %(-ff"-.) 18 sufficiently large

negatively near the surface (see equation (6.3)) so that

(1 - 22)v(c) = 0.580 +whon ¢ = Cy =1 - Illi_ (sections 4 and 5).
5 .

Although detailed stabillity calculations for supersonic flow over
a noninsulated surface have not been carried out, the funchion
(1 - 2&)v(c) has been computed for noninsulated surfaces at
Mgy= 1.3, 1.50, 2,00, 3,00, and 5.00 by a rapid approximate method
(appendix C)., The corresponding estimated values of Ro.. were

. ] min
calculated from equation (5.8), and in figure 7 these walues are
plotted against Ty, the ratlo of surface temperature (deg abs.)

to free-stream temperature (deg abs.). Ab any glven Mach number
kg
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greater than unity the value of Rg Poin increases rapldly

1.
as co-——)l - Tlli—; when , differs only elightly fram 1 - TR
(o] (o}
the stabllity of the leminar boundary layer ls oxtremely sensitive
to thermal conditions at the solid surface. At each valuve of Mo >1,

there is a critical value of the temporsture ratlo Tlcr for

vhich Rg —o, If T; £T; , the laminar boundary layer is
Crmin = “eoxr
stable at all Reynolds mumbors. The differonce betwoen the -
gtagnation-tomperatire ratioc and the critical-swrface~temporatvre
ratio, which i1s related to the heat-transfer coefficlent, is plotted
againet Mach number in figure 8., Under froc-flight conditions, for
Mach numbers greater than scme critical Mach number that dopends
largely on the altitude, the velue of Tg - Tlcr is within the

order of magnitufle of the differencoe between stagnation temperature
and swrface temperature that actually existe bocauso of heat radia-
tion from the surface (references 14 and 15). In other words, the
critical rate of heat wilthdrawal from the fluid for laminar ata-
bility is within the order of magnitude of the calculated rate of
hoat conduction thrcugh the solid surface which balances the hoat
radiated from the surface under squilibrium conditions. Tho calcula-
tions in eppendix E ghow that this critical Mach number is approxi-~-
wately 3 at 50,000 feet eltitude and approximately 2 at

100,000 feet altitude. Thus, for M, >3 (approx.) at 50,000 feet
altitude and M, > 2 (approx.) at 100,000 feet altitude, the

laminer boundary-layer flow for thermal equilidbrium is completely -
s'ﬁ;‘bla.in the absence of en adverse pressure gradient in the freo’
girean, - - . ) : .- . P :

When there is actually no heat conduction through the solid
surface, the limit of stability of the laminer boundary layer
depends only on “the free-stream Mach nuwber, that is, on the extent

of the "aer'od.ynamic he " o OV
. ating” {of theo order of wy * S—-—- near
\ ov*

the golid éurface._ A good indlcation of the influsnce of the free-
stream Mach number on the distribution of p:—-—; acrose the boundary

layer for an insulated surface is obtained from & rough estimato

of the location of tho poilnt at vhich g’—; pg'--; roaches a positive .

d.e' dw
maximm (or ———- pd-; vanishes). Differcntiating the dynamte

ay”
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equations of mean motion twice and making use of the energy and
conbinuity equetions yields the following resulit for an insulated

surface:
a3 fwt b2 (Wl'.)e |
dy3 T L 2 Tlml-
vhers b = & From equations (6.&). and (6.5) the value

V¥ 2* _ _ |
ac Sw a4 fw

of ¢ at which —~—f-—-) vanishes, or —{-——] reaches a maximm,
a2\ S AyN\T /-

iz given roughly for alr by -

Wt[dg' w)] | R
L — 2 2
Sty N ", ..

- & =1 . ‘ (6.6)
R
& \T /], B |

~

b{0.3320)

= (appendix B).’ In other words, ths point
1

in which wl' =

1 : .
in the fluid at which -g'-y—(%—-) attaine a maximm moves farther out

from the surface as the Mach number is increased - at least in the
range O S M, S 4.5 (approx.); therefore the value of ¢ for

; )
which —:’-}-( %—) vanishes and the valus of ¢ = Cq for which

(1 - 2A)v(e) reaches the value 0.580 . both increase with the Mach
number (fig. 3(a)). By equation (5.8), the value of Recrmi for
n

the laminer boundary-layer flow over an insulated surface décroases
as the Mach number increases and the flow is Gestabillzed, as com-.
pared with the Blasius flow (fig. 5).
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- ¢. Results of Detalled Stability Calculations for
Insulated and Noninsulated Surfaces

From the results of the detalled stabllity calculations for
several representative cases {figs. & to 8), a guantitative
estimate can be made of the effect of free-stream Mach number
and thermal conditions at the solid surface on the stabllity of
laminer boundary-layer flow. For the insulated swurface, the value
of Recr is 92 when Mo = 1,30 as compared with a value

min
of 150 for the Blasius flow. For the noninsulated suwrface

= 1 3 ) Ty = 1.2 (heat

at M, = 0.70, the value of Ry .. .- is 63 when Ty 5 (

added to fluid), Rg = 126 when Ty = 1.10 (inswlated sur-
crmin

face), and 'Recrm = 5150 when T, = 0.70 (heat withdrawn from
Xfe]

fluid), Since Roy = 2.251292, - (the value of 6

is proportional to the skin-friction coefficlont, differs only
‘glightly from the Blasius valus oi 0,6667) the effect of the thermal
conditiong at the solid swrlace on Rx* is oven nore pronounced.

The valus of Ry 18 60 x 10° when T; = 0.70 and M, = 0.70,

8 compared with a value of 51 X 103" for the Blebius flow
6 Ty =1 and M, = O). For the insulated surface the value

of Rx*cr declines from the Blasius value for M, =0 to a
min
value of 19 x 103 at M, = 1.30. The extroms sensitivity of the

l:!mi:b of stability of the laminar bound'ar; layer to thermal condi-
tions at the solid swrface vhon Ty <1 i1s accounted for by the

Tact that c, is small vhon Ty <1 and M, < 1 (or M, is not
' 1 .
much groator than unity) and Recrmin' s:—E (equat?.on (5.?)).
o .

Small changes in c¢,, therefore, produce large changos in Rg orgn’

. : , n
In addition, vhen T3 < 1, small changes in tho thermal conditlons

. +1
at the solid surface produce appreciable changes in —% (%—) (equa-~
tion (6.3)) and, theroforé, in the value of Cor
Not only is tho value of Rp orpy aPfoctod by the thormal
n

condltions at theo solid surface and by the free-stream Mach number
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but the entire curve of ag agalnst Ry for the neutral dis- )

turbances 18 also affected. (See Tigs. 4(k) and 4(1).) When the
surface is insulated. (end M, # 0), or heat 1s added to the fluid ‘

(Tl = 1.25), gg—>¢g # O as Rg—> o along the upper branch of

the curve of neutral stability. In other words, there is a finite
range of unstable wave lengthse oven In the limiting case of an
infinite Reynolds number (inviseid fluid). EHowever, a-—>0

as Rg—> o for the Blasius flow, or when heat is withdrawn from

the fluld,  This behevior is in complete agreement with the results
obtained .in section 4 and in reference 8.

A comparison between the curves of dg against Rg for
Ty =1.25 and T; = 0.70 at M, = 0.70 shows'that withdrawing

heat from the fluid not only stabilizes the flow by increasing Rg o
; / : n

but also greatly roduces the rar'zé_;e of unstatle wave numbers (ag)

On the other hand, ‘the addition of heat to the fluid through the
solid surface greatly increases the range of unstable wave numbers,

It should also bo noted that for given values of o, o,
and Ry the time frequencies of the boundary-layer dlsturbances

in the high-speed flow of a gas are considerably greater than the
frequencles of the familiar Tollmien waves observed in low-speed
flow. The actuel time freguency n¥* expressod nondimensionslly
is as follows: ' '

n¥ .'(_J;T" cag
(E;?)E ) 2Ry

For glven valuos of ¢, Og , and Rg the frequency increases as
the square of the froe-stream velocity.

d. Instability of Laminar Boundary Layer and
Transition to Turbulent Flow

Tho valuo of Rgo, obtained from bthe stability analysis
n . .

for a given lamipar boundary-lsyer flow is tho valuo of the Reynolds
number at which solf-exclted disturbances flist appear in the
boundary layer. As Prandtl' (reforence 12) carefully pointed out,

>3



NACA TN No. 1360

these initlal distwrbances are not turbulence, in any sense, dbub
slowly growing oscilletions, The value of the Reynolds number at
vhich boundary-layer dilsturbances propagated along the surface will
be amplified to a sufficlent extent to cause turbulence must be
larger than Rg CTadn in any case; for the insuwlated flat-plate

flow at low speeds and with no pressure é:a.dient, the transition
Reynolds number Rg t 18 found to be three to. seven times as

large as the valus of Rg Tgn (references 6 and 7). The vé,lue
) : 1
of Rg £ depends not only on Rg,,, but also on the initia

magnitude of the disturbances with the most "dangerous" frequencies
(those with greatest amplification), on the rate of amplification
of these disturbances, and on the physical procese (as yet wnknown)
by vhich the quesi-stationary leminar flow la finslly destroyed

by the amplified osclllations. (BSee, for oxample, references 16
and 17.) The results of the stability snalysis novertheless pormit
certaln general statements to be made concerning the effect of
freo~stream Mach nuuber and thermal conditions abt the solid surface
on transition. The basis for these statemonts is sumarized as
follows: '

(1) In many problems of technical interest in aeronautics the
level of freeo-stream turbulence (magnitude of initial disturbances)
is sufficiently low so that the origin of transition is always to
be found in the instablility of the laminar boundary layor, In
other worde, the value of Recz‘min 1s an absolubte lower limit for

trangition,

(2) The effect of the free-stresm Mach mummbor and tho thermal
condltions at the solid surface on the stability limit (Recrmi )
n

:Es overvhelming. For example, for M, = 0.70, the value of Rec
vhen T3 = 0,70 (hoat withdrawn from fluld) is more then 80 times
as groat as the valuo of Ry, whon Ty = 1,25 (heat added to
fluid).

(3) The maximum rate of emplification of the self-oxcitoed
boundary-layer dlsturbances propagated along tho swrface varios _
roughly ag 1’ o) Tmin’ - (This approximation agrees closely with

the numerical results obtalned by Pretsch (reoftronco 18) for tho
cago of ‘an lncompressible fluid.) The.effect of withdrawing heat
from the fluid, for oxample, is not only to incroaso Rg c and
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stabllize the flow in that manmer but also to decrease the Initial
rate of amplification of the unstable disturbances. In other words,
for a given level of free-piream turbulence, the interval _
between the first appearance of self-excited disturbances

and the onget of transition is ex_pected to be much longer for a
relatively stable flow, for which Rac is large, then for a

relatively wnstable flow, for which Rg cr;nin _' 15 small and the
initial rate of amplification is large.

On the baeis of these observations, trensition is delayed (Rg -

increased) by withdrswing heat from the fluid through the solid
surface and is advanced by adding heat to the fluid through the
so0lid surface, as ccmpared with the insulated swface at the same
Mach number, For the insuleted surface, transition occurs sarlier
as the Mach numbor is increesed, as compared with the flat-plate
flow at very low Mach numbeors., When the free-streem weloclty at
the edge of the ‘bound.s.ry layer is supersonic, transition never -
occurs if the xrate of heat wlthdrawal from the fluid through the
golid suwrface reaches or oxcoeds a critical value that dopends
only. on the Mach mumber (section 6b and figs. 7 and 8).

A comparison botwoen thse results of the present snalysls and
measurements of transition is possible only whon the frec-stream
bressure gradient is zoro or 1s hold fixed whilo the Frec-stroam .
Mach muumbor or the thormal conditions at tho solid surface are
varicd. Liepmenn and:Filas (reforonce 19} have measured the move
ment of the transition point on a flat platuv at a very low free-
stream veloclty when heet 1ls applisd o the surface. Thoy found
by moans of the hot-wire ansmomeboer -bhat Ry X, doclined

from 5 X J.O5 for the insulgted sm-fr.zce 'bo_a. valuo of approxi-
matsly 2 X 10°. for T; = 1,36 when tho lovol of free-stream

(w*1)= ' o .
- was 0.17 percent, or to a value of 3 X 102

(5)°

when T ke = 0.05 percent and Ty = 1,40, Tho valizc of Rgi_br

turbulence

declinos from 470 (approx.) to 300 (approx ) in the first case and
to 365 in tho second,

Frick and M\.Cullm,_gh (reference 20) observed the veristion in
the transition Reynolds number when heabt 1s applied to the upper
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surface of an NACA 65,2-016 airfoll at the nose section alone, at

the sectlon Just shead of the minimm pressure station, and for

the entire leminar run., When heat ls applied only to the nose

section, the transitlion Reynolds number (determined by total-pressure-

tube measurements) was practically vnchanged. Near the nose,

Rg << Ry . end the strong favorable pressure gradient in the
Crmin - :

region of the stagnation point stebilizes the laminar boundary layer

to such an extent that the 'addition of heat to the fluid has anly

a negliglible effect. When heat 1ls applied,however,to the section

Just ghead of the minimum pressure polnt, whers the pressure

gradients are moderate, the transition Reynolds number Rg tr

declined to a value of 1190 for T ~ 1,1k, - compared with a value

of 1600 for the insulated surface. When heat 1s applied to the
entire leminar run, Ry i declined to a value of 1070 for T, = 1.1k,

- It would be interesting to Investigate experimentally the
stabllizing effect of a- withdrawal of hea’t from the fluid at super-
sonlic velocities. AL any rate, on the basis of the resulits obtailned
in the experimental investigations of the effoct of heating on.
transition at low spoods, the results of the stability analysis
glve the proper direction of this effect.

T. Stability of 'bhé Laminar Bouzidary-Layer Flow'of '.a Gas with -a :
Pressure Gradlent in the Direction of the Free Stream

- Tor the case of an incompressible fluld, Pretach {reference 9)
has shown thet even with a pressure gradient in the direction of
the freo stroem, tho local mesmn-velocity distribution across the
boundary layor completely deotermines the stabilify characteristics
of the local laminar boundary-leyer flow at large Reynolds numbers.
From physical considerations this statement should apply also to
the compressible fluld, provided only the stability of the flow -
in the boundary layor is consideored and not the possible inter-
action of the boundery layer and the main "extermal flow. Furthor
study is required to settlo this question.

If only the local mean velocity-bemperature distribution across
the boundery layer 1s found to be significant for laminap atadlility
in a campressible fluld, the criterions cbtainod in the prosent -
peper and in roference B are theh immediatoly applicable 4o laminar
boundary-layer gas flows in which there is a froe-stream proegsure
gradiont. The quantitative offect of a pressuro gradicnt on laminar
stabllity could bo readily determined by means of the approximate
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estimate of Rg . (equation (5.7)), in terms of the distribution

of the quantity pc%'r across the boundary lsyer. Such calculations

(wnpublished) have alreoady been cerried out by Dr. C, C. ILin of

Brown University for the incompressible fluid by means of the

approximate estimate of Rgy - given in reference 5, part III.
Crmin

In any event, the qualitative effect of a free-phtream pressure
gradient on the local dlstribution of pi—-;-_r across the towndary

layer 1s evidently the same in a compressible fiuwild as in an incom-
Pressible fluid. If the effect of the local pressure gradient alone
is considered, the velocity distribution across the boundary layer
is "fuller" or more convex for accelerated than for wniform flow,
and conversely, less convex for decelerated flow. Thus, from the
results of the present paper the effect of a negative pressure
gradient on the laminar boundary-layer flow of gas le stabilizing,
go far as the local mosn velocity-temperature distribution is con-
corned, while a positlve pressure gradient is destabilizing.  For
the incompressible fluid, this fact is woll osbablishced by the
Raylelgh-Tollmlen criterion {reference 3), the work of Helsenberg
(roference 1) and Lin (reference 5), and a mass of detailed cal-
culations of etability limits from the curves of o against R
for the neutral disturbances. These calculations were recently
carried out by several German investigators for a comprehensive
serles of pressure gradient profiles, (Seo, for examplé, refer-
onces 9 and 21.)

Scme idea of the rolative influence on leminar stabllity of
the thermal conditions at tha solld swrface and the froo-stresm
Pressurc gradient is obtained from the equations of mean motion.
At the surface, . - ' : :

N i W N - S
B (‘a@l“[s;@ %L?‘u&” =N

or

d dw m+l-.; 1 58 dug¥
sleg) == mw - (1.2)
dy \ dy 2 171 mtl =

1 T 7 ~
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g2 dugt
In a region of small or moderate pressure gradients| |— _ﬁ_ 2,
Vo* dx

say) the dietribution of pg is sensitive to the thermal conditions

at the solid surface. TFor exsmple, the chordwlse position of the
point of instability of the laminar bouhdary layer on en alirfoll
wilth a flat pressure distribublon ls expecsted to be strongly influ-
enced by heat conduction through the surface. (See reference 20.)
For the insulated surface, the eguations of mean mobtion yleld the
following relation (appendix D) , which does not involve the preasure
gradient explicitly: ' :

3

162 /ay ' 1)

il @_.‘i = glm+ 1) (7 - 1)M02-(--—-— >0 (7.3)
ay® \ &y 5 Tj_]:2

The effect of "aerodymamic heating" at the surface opposes the
- effect of a favoreble pressure gradient so far as the dilstribubion

of pgf across the boundery layer 1s concerned ( equattons (7.2)

¥y
and, (7.3)).. The relative quantitative influsnce of these two effects
on laminar stability can only be settled by actual calculations of
the laminar boundary-layer flow in a compressible fluid with a free-
stream pressure gradlent. A method for the calculation of such -
flows over an insulated surface is given in reference 22,

. When the local free-stream velocity at the edge of the boundary
layer is supersonic, a nogative pressure gradient can have a declsive
effect on laminar stability. The local laminar boundery-layexr flow
over an Insulated surface, for example, is expacted to be completely
stable when the magnitude of the local negative pressure gradient
reaches or exceeds a critical value that deponds only on the local
Mach number and the properties of the ges. The critical magnitude

of the pressure gradient is that which makes the quantity :_3; pg'}v-

sufficlently large negatively near the surface go that

' 2 N
S O PR L KA | P
L‘l (w')3dy ; w=C

1
When ¢ = 1 o —,

M
o
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Tt has already been shown in the present paper that vhen M, >3

(approx.) the laminar boundary-layer flow with a uniform free-stream
velocity is completely stable under free-flight conditions when the
gsolid surface is in thermal equilibriwm, that is, when the heat
conducted from the fluld to the surface balances the heat radiated
from the surface (section 6b). The laminer boundery-layer flow

for thermal equilibriim should be completely stable for M, > Mg,

pay, where Mg< 3 1f there.is a negative pressure gradlent in

the direction of the free stresm. Favorable pressure gradlents
exist over the forward part of sherp-nosed airfoils and bodies of
revolutlon moving at supersonic veloclties, and the limits of sta-
bility (Recr ) of the laminer boundary layer should be cal-

culated in such cases.
CONCLUSIONS

From a study of the stability of the laminar boundery layer
in a comproessible fluid, the following concluslons were reached:

1. In the compressible fluid as in the incompressible fluid,
the influence of viscosity on the laminar boundaery-layer flow of
a gag 1s destabilizing at very large Reynolds numbers. ITf the
free-stream velocity is subsonic, any lamirar boundary-layer flow
of gas is wunstable at sufficlently high Reynolds nubors.

2, Regardless of the free-stream Mach number, if bthe product of

the mean density and the mean vorticity has an extremum % p%

venighes | for some value of w> 1 - -j-/}- {(vhero w 1s the rabio of

moan velocity component parallel to theosurface to the free-stream
velocity, and where M, is the free-stream Mach mumber) the flow

is mmsteble at sufficlently high Reynolds numbers.

3. The actual limit of stabllity of laminar boundary-layer flow,
or the minimum critical Reynolds number Recr s 18 determined
min
largely by the distribution of the product of the mean density and
the mean vorticlty across the boundary layer. An -approximate
estimate of P'ecr . 18 obtained that serves as a criterion for
. min
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the influence of free-stream Mach nvmber and thermal conditions at
the solid swrface on laminar etebility. TFor zeroc pressure gradient,
this estimate reads as follows: .

6 e

T
! ot \ll = MB(L - op)?

®min

'whex;e T 1is the ratio of temperature at a point within the boundary
leyer to free-stream temperature, Ty 1is the ratio of temperatuwre

at the so0lid surface to the free~stream velocity, and c, is the

valus of ¢ (the ratio of phase velocity of disturbance to the free-
gtream velocity) for which (1.- 2A)v = 0.580. The functions v(c)
and. Mc) are defined as follows:

- /o . _
- ﬂ s and
Qan>l°f 3 (1 N

v(c) = SN g
Tl [(aw>3 on \T 3
on
w=C
n@-@l
)\,(O) T er———
c,
vhere
n nondimensional distance from surface

L., On the basis of the stability criterion in conclusion 3 and
a study of the equations of mean motion, the effect of adding heat
to the fluld through the solid surface is to reduce Re'cr and to
o min
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destabilize the flow, as compared with the flow over an insulated
surface at the -same Mack number. Withdrawing heat through the
solid surface has exactly the opposite effect. The value of Rec v
Tor the laminar boundary-layer flow over an insulated surface decreases
ag the Mach number increases, and the flow is destabllized, as com-
pared with the Blaslius flow at low speeds.

5. ¥When the free-stream velocity is supersonic, the laminsr
boundary layer is completely stabilized if the rate at which heat
ig witndrawn from the fluid through the solid surface reaches or
exceeds a certain critical value. The critlcal rate of heat transfer,

: ' a dw
for which Ry crmin-—-)oo s 18 that -which makes the. quéntity % <pd-;
sufficiently large negatively near the surface so thab )

[:l - 27\.'(c_)j v(é) = 0.580 when . ¢ = co-= 1 -.-S-]&-. Calculations for
. _ - M

several supersonic Mach numbers between 1,30 and 5.00 show that
for Mo >3 (appr_ox.) The critical rate of heat withdrawal for

laminer stebility ie within the order of magnitude of the calculated
rate of heat conduction through the solid swface that balances the - .
heat radlated from the surface under free-flight conditions.

Thus, for M, >3 (approx,) the laminar boundary-layer flow

for thermal equilibrium is completely stable at all Reynolds numbers
in the absence of a positive (adverse) pressure gradient in the
direction of tho free siream.

6. Detailed calculations of the curves of wave mumber (inverse
wave lengbth) against Reynolds mumber for the neubral boundary-layer
disturbances for 10 representative cases of insulated and non-
insulated surfaces show that also at subsonlc speeds the guantitative
effoct on stability of the thermal condltions at the solid surface
is very large, For example, at & Mach number of 0,70, the value
of Rg is 63 whon T, = 1.25 (heat added o fluid), Rg.. =126

CTypin 1 CPpin
vhen T, = 1.10 (insulated surface), and Rgcrmin = 5150 .When Ty =0.70

{(hoat. withdrawn from fluwid). Since Rx* x 2.25R92_, the effect
on RI,e is even greater. . '
Crmin

7. The results of the analysis of thp'stability of leminer i
boundary-layer flow by the linoarized method of small perturbations
must be applied with cars to predictions of transition, which isg a
ponlinear phenomenon of & different order, Withdrawing heat from the
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fluid through the solid surface, however, not only increases Recrmin

but decreases the initial rate of amplification of the self-exclted

disturbances, whick is roughly propartional to 1 orys 3 addition
n

of heat to the fluld through the solid surface has the opposlte
effect, Thus, it can be concluded that (a) transition is delayed
(Rg o increased.) by withdrawing heat from the fluid and advanced by

adding heat to the fluid through the solld swrface, as compared with
the insulated surface at the same Mach mumber, {b) for the insulated
surface, transition occurs earlier as the Mach mmber is increased,
(c) when the free stream velocity is eupersonic, transition never
occurs iFf the rate of heat withdrewasl from the fluid through the
solld surface reaches or exceeds the critical valus for which
Ry . s (See conclusion 5.) '

min

Unlike laminar instability, transition to turbulent flow in
the boundary layer is not a purely local phenomenon but depends on
the previous history of the flow. The quantitative effect of thermal
conditions &t the solid surface on transition depends on the existing
preseure gradient in the direction of the free stream, on the part
of the solid swrPace to which heat is applied, and so forth, as
well as on the 1nitial magnitudo of the disturbunces (level of free-
stream turbulence). . '

A comperison between conclusion 7(a), based on the rosults of
the stability enalysis, and experimental investigations of the
effect of surface heating on transition at low speeds shows that
the results of the present paper glve the proper direction of this
effect. :

'8, The resulte of tho presont study of laminer stadllity can
be extended to Include laminar boundary-layer flows of a gas in
vhich there is a pressure gradient in the dlrection of the freo -
stream. Although further study is requirod, it is presumed that
only the local mean velocity-temperatuve disbtribution determines
the stability of the local boundary-layer flow., If that should
bo the case, the effect of a pressure gradient on laminar stabllity
covld be easily calculated through its effect on the local dlstri-
bution of the product of mean density and mean vortieity across '
the boundary layer. : - '

When the fres-stream velocity at the "edge" of the boundery
layor is supersonic, by analogy with the stabilizing effect of a
withdrawal of heat from the fluid, 1t is expected that the laminar
boundary-layer flow is campletely stable at all Reynolds numbers
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when the negative (favorable) pressure gradlent reaches or exceeds
a certain critical value thet depends only on the Mach number and
the proporties of the gas. The leminer boundary-layer flow over a
surface in thermal equilibrimm should be completely stable for

Mo_ >Ms’ say, where Mgz < 3 if there is a negative pressure

gradient in the direction of the free streamn,

Langley Memorial Aeronautical Lsboratory
Nationel Advisory Committee for Aeronautics
Langley Field, Va., September 5, 1946
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APPENDIX A
CALCULATION OF TNTEGRATLS APPEARING IV THE INVISCID SOLUTIONS

Tn order to calculate the limits of stability of the laminar
boundary layer from relations (2.21) to (2.29) between the values
of phase velocity, wawve number, and Reynolds number, 1t is first
necessary to calculate the values of the integrals Kl, El, Ho,

Ny, M3 s N3 , and so forth, which eppear in tho expressions for
the inviscid solutions @ (y) end o@y(y) and thelr derivatives

at the edge of the boundary layer. Thege integrals are as follows
(equations (2.13), (2.9), and (2.10)):

e (w - c)?
W - C
Hl(C) = ........'f—_..—.dy
uly
RN Moe(w - ¢c)@
K, (e} = ' 5
v, (w - o)
Vo o
N (c) = KqH - T - M - 0)® y(v-c)e
ole) = KiHy - K5 = ( 3 N ay = Hy(c)
W - 0C
Iy Ny
Wo

Jo

i dy (v~ c)2 T

M3(C) = H'EEI" H3 =J
J1

I
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Ni(e) = KyHp - Kg

7 3
2 -MOE(W-— c)2 T (w-c)? 2mp -MOE(W- c)?
= = d,}r T P ay
-Jyl (w- C) yl :I' (W-r c)
gnd so forth.

Terms of higher order then a5 in the scries expressions
for ¢y &and @, are neglected. Wien « < 1, the error involved
n

o
1s small because the terms in the series decline llke vk Tven

for a > 1, however, this approxrimation is Justifled, at least for
the values of ¢ +that appear in the stabllity cslowlations for
the 10 representative cases seolected in tho present papor. For
example, the leading term in R.P. Npy.,(c), vhere Xk =2,3.. .,

i 3 k-1

‘18 spproximately -% [aﬁf—-s:! miltiplied by the leading term
! - c

in R.P. 1\T3(c). The quantity in the brackets 1s at most 0.12 in

the present calculations; for example, R.P. 1\15(c) = 0.06 R.P. .13?3(0).

Moreover, R.P. Nek(c) = (1 -~ ¢) R,P. N2k+l(c)‘ Similar spproximste

relations exlst between R.P. Mp(c) and R.P. I-%(c); and, in
3 . :
- c
addition, R.P. Ms(c) =z (1 - ¢c) -G——R_.P. N3(c) = 0.015 R.P. N3(c)_.
at most.

The only inbtegral for which the imaginary pert is calculated
is Kl( c). At the end of this appendix, it is shown that the conw

tribubtions of the imaginary parts of Hy, M3, and. I\T3 ara
negligible in comparison with the contribution of I.P. K;(c).

Goneral Plan of Calculation

The method of calculation adopted must take lntc accowmbt the

fact that the value of %5_ (p%) at the point ¥ = For vhore W= c,
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strongly influences the stability of the laminar boundary layer,
Accordingly, the integrals are broken into two parts; for example,

73 ’ ' 1Yo '
T oy | T a7 - u 2
y, (-0 Jyy (¥ -0

I

K, (¢)

Kyq(c) + Epple) - M2

dy

is calculated very accurately, wheresas- Klg(c) is calculated by a
more approximate method as follows:

a
where ¥y > y,- The integral K;1(c), which involves (.&}. pq{‘iﬂ
=

Jo
T
X = LA (1)
12(6) T3 .(w - 0)® v

This integral is evaluated as a power.ssesriesa iIn c¢. The
velocity profile w(y) is approximated by a parabolic arc plus a
straight-line segment for purposes of integration. In the more
complex Integrals Hy, M3, and N3, the indefinlite Inte-

K4 T ik T '
grals dy and —5 dy are evaluated by 21 .
v, (v - c)e (w-~c)
J : 7

or 41 point numericael integration by means of Simmpson's rule. The
values of w(y) are read from the velocity profiles of figures 1
and 2, The value of yy -y =a is 0.40 in the present series of

calculations; this value 1s chosen so that the polnt y = yJ is
- never too cloge to the singularity at y = V- Take

"‘YJ . . :
£,(e) = | —E gy (2)
+ Jry (w-c)® '

66
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Ny
T -

The integral Kll(c), or the indefinite integral —(a--—--s-: oy
W~ e
okl

that sppears in Hy, M3, and, 1\73 , 1is evaluated by expanding the

integrand in a Taylor's series in y - Yo snd then intezrating the

series term by term. The path of integration must be taken below
the point y = y, in the camplex ¥-plene.

Tnstead of calculating the valuss of the velocity and btempera-
ture derivatives wc(r'l) and Tc(n> directly, it is simpler to relate

these derivatives to their values at the surfaco by Teylor's:series
of the form

: o (2+2)
AR P Wl(n*“l) (o - 7)) + ~—-——-——123 (v - 3’1)2 ..

The derivatives at the surface ‘W’l(n) and ,_.L,l(n) ere calculated
from the equations of mean motion (eppendix B).

The integral XK,,(c), for exsmple, is finally obtained as a

pover series In y, - ¥; = 0 and in .y.j - ¥, =8 -0, plus terms

involving log ¢. The phage veloclty c¢ is reia'bed to o Ly

&, _ & .
Cc o= w ! 0‘+i2-0’d+-~:-3—__63+"'
1 2 3!

where

(k)

'W’l ‘ ) _'

he= —+

1

Terms up to the order of a” are retained in order ‘o include all

terms involving W vii
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Detailed Calculations

In order to illustrate the method, tho evalusbion of Kl(c)
is given in some detail,as followss

(1) BEvaluation eof Xy (c):

7
Kl(c) = —. 2 - }IO
7y (v - ¢c)
(a} Define
Is
Kll(c) = .‘.._.._T._....... dy
Uy (w ---c:,)_2
Now
T T
2 PR
(w- )= (v (r - .fc)“dze
where

w " o w 1t

Wy) =1 "'E%;T CEEAE: ;wc, (v - yc)e Youe .

The Twnction -—T-é- isg developed in a Taylor's sories arouwnd tho

volnt " w= ¢ as follows:

>y_y <4’2 (}’ - yc) + _....> (Y - S’c o
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where
Yo =1
Y‘,,0"
¢ oyt
C
(%) ) wc(k""l)
© ( + 1w !
Then
! r °afy-vo) 0y - y)g
D)= S | 2(:9()( )<2> )
(c :3’1-3" (y yC V
and

S % RN Ti-FN Ll /T\"
ORI | S R L2V (=) (7, -
ut (v")? [y'- FJ <‘V 2>c lnCl "yc>+2 <‘3’; (FJ yl)
vy °
l T 1
JMlEClTE) (G5 - 70 = (7 - 7o) +
C

1 p \(lo+l) _ X K

wEE) -(&-&)]*---}
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where
~ix
Yy =T, = |y1 - Yol
Yy == (7 ‘-71')'(3’3'?”1)"'&"’
G =V, - Yl
2 \(K)
The coefficlents <—é are expressed In terms of derivatives
14
of T and w at ¥y = yl as followe:
Define
k
1 1 TV
£2.¥) = - _<-f- . k22
(k - 1) k! (w)2\¥2
T
£(y) = - 5
(w')
U Mk . S N
-t ()2 \W2 (w3 ay \r
Then

k
g 3 = 1 ....T...
k( 0) (wc,)e(k - 1)kt (1!;2) yc
(7))

= fk(yl) i flf'fyl) (yc TTY Y (yc ) yl)z R

TO
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¢ 7.! '?.-“

(The methdd ad.opted. ‘for 'bhe “baiculation of £ (=) (yl) from the

velocity end temperaturs derivatives Wy () and T (3) is given

at the end of this appendix.)

From the expression for Kll( c),

I.P. Kll(c) - :[:P.- K]_(c) .,. : : e
- 1(3') , ,
= { (yl) + ofy (yl\ e e +—;-fl(1)]
and
T, o, 5
R.P. Kj4(c) + TTE T G T ATt 0T et o
| I.P.‘Kll(c) : - 1
+ "ln<a°,o’>+a-g[£0(yl)
o 7o ()
+afo’<yl)+-. o v k- oy —e k. e
é
720 |
vhere
=% "N
£ (k+l)(y)
TS TETD T T M fo(72) 0L%¥L5 (55.= 0)

8, = af'a(yl) + aEfB(yl * a3fh( yl) * auf5(yl> + a5f6(yl> ..

T
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8 = ai‘a'(yl) + 5%3'(;;1) + 'a3fh:'(yl) + ahf,i'(yl) ..

- [Eaf3(yl) + 3a2fh(yl). + ha.3f5<yl) + 5ah'f6(yl') . ]

8 =-:- [éfa"(yl) + aefa"(yl) + a.3f,+"(yl) + -. .. ..]
- [Eafs’(yl) + 38"21‘1:,'('71) + ha3f5'(yl_) + .. .]

+ [3af)+(yl) + 6325'5(;«1) + lOa3f6(yl> .. ]

s, - .2. [afa'_"(yl) va2e () J -2 [Eaf3"(yl) 3628, (7,) + ]
+ [3&1‘4'@1)4- 6a2§'5'.(y1) + . ] - [ hafs(yl) + 10a2f6(y1) + ]

1

5, = % [afeiv(yl)... ]-—% [Qafé“'(‘yl)"' ]+%‘- [3afh"(yl)+ ]
- [’-tafs'(yl) + ] + [5af6(yl) + _]

A
d 2 - '+ d = l.O
k r—-;l (r + 1)! dk"r ©
()
= = 0.40
M -

T2
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(b) Define

¥
2 T

(v - c)®

KILE( e} =
Uy 3

11,0,

i

Jo.so (v - C)e

d(y yl) |

[z2d

k
= :>: ak(k-x-l)c

. k=0

where

1.0
a, = imdj-&l)

k .
: 0.40 W2

The veloclty profile w(y) ie approximated by & parabolic arc
in the inbterval 0.40 < L£y-7n < y3 - Ty and by a straight line

= - + - - '
(‘w = Constant = w(y3)) in the interval ¥y -y Ly-3 g0
The valus of 73 is detexrmined by imposing the conditlion that the

aree under the parabolic-arc straight-line segment sauals the area
under the actual velocity profile w(y) in the interval

0.0y - 7y £ 1.0. The parsbolic arc W= 1 + m(y - yl) + n(j - yl)a
is determined by the following conditions:

vhen y =y, <1,

n
[

W

73
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wvhen ¥y =y, &nd Yy~ Ty = 0.h0,

v = ()

where w(yd) ie read off the velocity profile of figures 1 and 2.

The value of y), 1s chosen so that the parabolic arc fite the
velocity curve w(y) closely over the widest possible rxange.

For ¢ = 1,

- 7 -1l .2 y -1 .22
T—Tl"[(Tl"l)"—'-a’*—-Mo W - 2 MOW

Therefore

2= T (Tgua * T) - [(Ti ](Ikul + 1) - m"* # (T + T

where

r - L‘y“ Yl d(:y‘ - ¥

and

L[ -y R CRED)
sy [ ) &7(3’3)]1:

Th
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Ik is evaluated by approximating w(y) by a parabolic arc as
followss '

YB“yl
Il=-—V;:—_ln “vfi:'m'z(y‘yl)
+m + Y -y
| €l o
I-- 1 m+ 2n(y - 1) I3V L Bo3 ()
Ue- 24 1 frm@-51)+ 0@ - 7)) k'lom o2 A
vhere A = - 4in.

Ag a control in the calculation of the series expression

Z a, (ler1) & for ;. o(c), 1se is made of the fact that, from

k=0
the definition of Ik and J’k,

kd_}@(x +J> w"’J>

L“’("’ 3) j Feal”

and therefors

]"m (al:+l 1 0k
k3o \ 8% - w(yJ_) k+ 1
The remainder after N - terms in the series for Kle(c) is given

apyroximately by

5
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[(7 + 1) term]
)

The reel part of Kl(c) is obtained by combining the results
of (a) and (b); that is, _

- . 2
R.P. K;(c) = R.P. |Kyq(c) + wl'c + K._Lg(c) - M,

(2) Evaluation of Hy(c)s

The Integrand of thls integral is free of singuwlarities in the
reogion of the complex y~planse bowmded by ¥ = 7y and ¥y = Vol -

therefore H.(c) is evaluated. by purely numerical integration. The
actual proce&ure employed for the calculatlon of integrals of thls
type iz ag follows: {(The integral Hl(c) gerved as8 an illustra-

tion,)
(2) Define
b b b
E. (c) = = pw"':' an - 2¢ pw 8n + 2 g a
. 1 “p n - 1 N
' 0 0 1118]

where
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and

o
%
uO

b= sV_____
v ¥ x*

(b} With the approximation that the viscosity varles linearly with
- the absolute btemperature, the velocity w is the same function of
the nondimensional stream fumction § as in the Blasius flow; that

is, :

v W:(ﬁ)i-wa(é) Il

where § 1s defined by the relation d&f = pw dn . (appendix B).

From these relstions

ov an = E‘{E)]n-l af —_- EJEB('QB)]IL dng
" since 4&f = wy dng. Moreover,

at ._
ow(t) T(WB) g

dn =

where

() = Ty - [(Tl -1 -2 5 - 302] Vg - Z";:'i AN

for o =1,
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(c) Finally, from the relations glven in (b),

b by _ \
1 ° 2 2
EFl(c) =% . vy dng - 2¢ X W dng o+ c/

- for the Blasiue flow. JFor

where b, 1is the value of B\j—
v ¥ x¥

the insulated surfaces, b, which is sorevhat arbltrary, was '
chosen &s 5.60; vhereas for the noninsulated swrfaces, by = 6.00,
(The value of wy abt 7z = 5.60 is 0.9950; vhen ng = 6.00,

wg = 0.9975. The value of b for the insulated surfaces le the

value of = at vhich w = 0.9950; whereas b for the noninsulated
surfaces is the velue of 7 for which 1-7.=_b0.99'_75.) The adveantage
o .
of this procedure ig that the integrals an d’qB are calculated
' . /0
once and for all.and the value of E,(c) d&epends only upon the

values of b and c. In fact,

= b - 2.3967

since

=+ 1.730

and
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Also,

W dng = by - 1.730

and

b bo
0 o

- Y -1 2
b, + 1.73(T; - 1) + 0.6667 =N,

[

b + 1.73 [(Tl -1) --——imo}+2.39671—;}-z~19

.See appendix B, (Incidentally, the last relation shows the effect
of free-stream Mach number and thermal conditions at the solid
surface on the "thicimess" of the boundary layer.)

{(3) Evaluatioﬁ of Hg(c):

He(c) _ Mo (VT c) (w - c) iy
¥y (w - ¢c)° by .
T2 2 Yo [ 2
T ; .
‘ } . ay (w-c) dy-M02 (w-¢) &y dy
vy (w-c) v, T vry dyy T
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Define
Yo P 2
By (o) = | . —2 o (w- o) o
yl (w - C) yl T
Jo [\F 2
H, (c) = =0 oy oy
% T
{ yl yl

(a) The integral ng(c) is evaluated by methods similar to those
already outlined for the evaluation of Hl( c). Thus

Jo (Y 2
H22(°) =f f (v - ) dy dy
T
ML
(2N _ r:sr . Yo y
=I dy v dy - 2¢ | d;yt o dy+ o -y p dy
UL vl yiL o ¢ ' Uy 1
1 [ [P LI - [ B [P
=—-§ T d.‘h:B£ Vi dnB-2c T d.nB‘L Wy d.nB+c TnB d:}B
b= \vo 0 0
vhere
P T - (ry -2 M 2 l Ly VR
A O R = R

The nine Integrals in the expression for 'Hga(c) are svaluated by
nvmerical lntegration using Simpson’s rulse.
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(b) Define

2 ¥ 5
B (c) = T ey | -e
7, (¥ - c)? ¥y T ..

1 1

J ¥y J. ¥
J q _a)2 2 w_ )2
___f T dy[ (w-c) dy"'f T dyf (w-c) ay
T (w-c)2 vy T yJ (w-c)2 yi T

Define

oy

193 7 dyry g_w—c)a

(c) =
Hoppte "

1 e

tT2 : J )
T (w -~ o)<
() - f o f R

3 1

The integral Hele(c) is evaluated as follows:

‘ye iy o
ey | L=l

yd ('W' - 0)2 .yl T

T Y I K7

f 2 g iy 2 (w-c)? dy - 2 = ay 2 (W-—c)2

Ty (w-c)2 y1 i ¥ (s-c)? v T

81
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Bub
Y2 N
‘f _,___,?___....2. 4y = K'.LE.(C)
v (w - ¢)
J
and
L] 2 |
f G- 9 ay - gy (o)
T
i
80 that
5r2 | :572 2
T (W - c)
} . s &y
210t Gl Bl f (v - 02 ¥ L T
73 :
Define

In P
P(C) - ....-.—---——--E G(.V'; G) a-y
s (w - ¢}

b T

1

et s &{n; c)an
b2 LO.L!-b ('W - c)h
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where

G(n; c) =

I
5

and,

. [(T -l)--——-—-—-M ]w-z—;—-}moewz

The integral P(c) is evaluated by numericel integration using
Simpson's rule; the required valuea of w eare read directly off
the velocity profiles of figures 1 and 2. Finally,

Hpy p(6) = Kya(e) Ey(e) - B(o)

The integral HEJ_-L(C) is evaluated in exactly the same way
as Kj;(c) where '

(w - c)e o 2
ST

'W' tre

-y)*3w’(y’ y)

83
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TECHNICAL NOTE NO. 1360

THE STABILITY OF THE LAMINAR BOUNDARY LAYER
IN A COMFRESSIBLE FLUID

By Lester Lees
SUMMARY

The present paper is a continuation of a theoretical investl-
gation of the stability of the laminar boumdary layer in a com- =
pressible fluld. An approximate estimate for the minlmum critical
Reynolds number Re"rmi » or stablllty limit, is obtained in berms

of the distribution of the kinematic viscosity end the product of

— . %
the mean density p¥% and mean vorticity du® across the boundary

dar
. layer. With the help of this estimate for Rp , 1t is shown
Cl‘min ’
that withdrewing heat from the fluld through the sclid swrface
increases Recrmi and stabllizes the flow, as compared with the
n )
flow over an insuwlated surface at the same Mach munber. Conduction
of heat 4o the fluld through the solid surface has exyactly the
opposite effect, The value of Recr for the insunlated surface

decreases as the Mach number increases for the case of a wniform
free-stream veloclity., These goneral conclusions are supplemented
by detalled calculations of the cwrves of wave number (inverse

wave length) against Reynolds number for the neutral dlsturbances
for 10 representative cases of insulated and noninsulated surfaces.

So far as leminar stabllity is concerned, an important 4if-
ference exlgts between the case of a subsmic and supersonic froe-
gtroam velocity outside the boundary laysr. Theo nsubral boundary-
" layer disturbances that are significant for laminer stability die
out exponentially with distance fram the solid surface; thorefore
tho phasc wvelocity o¥ of those disturbances is subsonic relative

to the free-stream velocity uo* - or u ¥ - c*< ao s vhere ag a_¥

. u
is the local sonic velocity. When fachi =My < 1 (vhere M, is

a*

free-stream Mach number), it follows 'bhat 0 < e* < S Xpays ond eny
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laminar boundary-layer flow is ultimately unstable at pufficiently
high Reynolds numbers because of the destabilizing action of vis-
cogity near the solid surface, as expla_ined.\by Prandtl for_ the

_ - 1 -
incompressible fluld. When M, > 1, however, _9-- >1 - I—«ih > 0.

. u *- (v}
(o)

If the quanbtlty [—E— (533 d—'E—*) 18 large enough negatively,
dy* dy* e lipys

the rate at which energy passes from the disburbance to the mean

———— .*
flow, which is proportional to -o¥ [ 2 (p* E‘-l-)] , cen
9y AT A

alvays be large enough to counterbalance the rate at which energy
passed from the mean flow to the dlstwrbance becausoe of the desta-
bilizing action ofviecosity near the solid surface. In that case
only damped disturbences exist and the leminsr boundary layeor is
oompletely stable at all Reynolds mumbers. This condition occurs
vhen the rate et which heat is withdrawn from the fluid through
the solid surface reaches or oxceeds & critical value that depends
only on the Mach number and the properties of tho gas. Calcula-
tions show that for M, > 3 (spprox.) the laminar boundary-laysr
flow for thermal equilibrium - where the heat conductlion through
the solid surface balances the heat rsdiated from the surface - 1s
campletely stable at all Reynolds numbers under free-flight conditions
\1f the free-stream velocity is uniform.

The results of the analysis of the stability of the laminar
boundary layer must bo applied wlth care to discussions of transi-
tion; howoever, withdrawing heat from the fluid through the solld
surface, for exsmple, not only increases Recrmin but also

decreases the iniltial rate of amplification of the self'-oxclted

. disturbances, which is roughly proportional to 1 crmi < Thus,

n
tho effect of the thermal condltions at the solild surface on the
transition Reynolds number Rp i similar to the effect on Ry .

: tr _ Crpin

A comparison between this conclusion éand experimental investigations
of the effect of surface heating on transition at low spceds shows
thet the results of the present papor glve the proper directlion of
this effecth. '

The extension of the rosults of the stability emalysls to
Jlaminar boundery-layer, gas flows with a pressure gradlent In the
direction of tho free streoam 1s discussed.,
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INTRODUCTION

By the theoretical studies of Heisenberg, Tollmlen, Schllichting,
and. Tin (references -1 to 5) and the careful experimental investi-
gations of Liepmann (reference 6) and H. L, Dryden and his asso-
_ciates (reference 7), it has been definitely established that- the
Tlow in'the laminar boundary layer of & viscous homogensous incom-
presaible fluwid is unstable above a certain cheracteristic critical
Reynolds number. When the level of the disturbances in the free
stream is low, as in mwost cases of technical interest, thie inherent
ingtablility of the laminar motion at suffliciently high Reynolds
nunmbers is responsible for the ultimate transition to turbulent
flow in the boundary layer. The steady laminar boundary-layer flow
would always ropresent a possible solution of the steady equatlions
of motion, but this steady flow is in a state of unstable dynemic .
egquilibriumn above the critical Reynolds number.. Self-exclied dis-~
turbances (Tollmien waves) appear in the flow, and these dlstwrb-
ances grow large enough eventually $o destroy the laminar motion.

The question naturally arises as to how the phenomena of
laminer instability and transition to burbulent flow are modifled
" vhen the fluid velocities and btemperature variations in the boundary
layer are large enocugh so that the compressibility and conductivity
of the fluld can no longer be neglocted. The present papsr repre-
sents the seocond phese of a theorebiczl investigation of the sta-
bility of the laminar boundary-layer flow of a gas, in which the
compressiblility and heati conductivity of the gas as well as its
vigcosity, are taken into account. The first part of this work
was presented in reference 8. The objects of this investigation
are (1) to dotermine how the stability of the laminar boundary
leyer 1s affected by the free-strcam Mach mumber and the thermal
conditions at the solid boundary and (2) to obtain a betbter under-
standing of the physical basis for the instability of leminar gas
flows. In this sense, the presont study 1s an extension of the
Tollmien-Schlichting analysis of the stability of tho laminer flow
of an incampressidle fluid, but the investigation 1s also concorned
with the general question of boundary-layer disturbances ina
camproessible fiudld and thelr possible inboractions with the main
external flow.

SYMBOLS

With minor sxceptions the symbols used in thls paper are tho
same as those introduced in roference 8. Physical quantities are

3
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denoted by an asterisk, or star, wheréas the corresponding non-
dimensional quantities are unstarred. A bar over a quantlity denotes
mean value; & prime clenotes a fluctuation; the subscript o denotes
freeo~-gtream values at the "edge" of the boundary layer; the sub-
seript 1 denotes values at the solld surface, and the sub-
seript ¢  denotes values at the imner "“critical layer", where
the phase veloclty of the disturbance equals the mean flow veloclty,
The free-stream values are the characteristic measures for all non-
dimensional quantities. The characteristic length msasure is tho -
boundary-lsyer thickness &, except where otherwise indlcated.
Note that in order to-conform with standard notation, the symbol &
for boundary-layer thickness is ungtarred, vhercas the symbols ¥
“and © 6 are used for bowndary-layesr dlsplacement thickness and '
boundary-layeor momentum thickneas, respectively.

x*- distance along surface
y* distance normal to surface
t¥ time
ux camponent of velocity in x¥-direction
we 2
Bt
v component of veloclty ln y¥-dlrection '
" :
T
oF
g | ‘stream function for mean flow
o¥% density of gas
r* .preseure of gas
ity temperature of gas
T* laminar shear gtress
ul* - ordinary coe:f‘ficien’c:.of vigcogity of s ...

v kinematic viscosity of gas (;;l*/b*)

L
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thermal conductivity of gas

gpecific heat at constant volume
gpeciflc heat at constant :g;ressu:re

gas constant per gram

ratio of specific heats (cp /cv) s 1.405 for air

camplex pHase velocity of boundary-layer disturbance

wave length of boundary-layer disturbance

boundary-léyer thickness

bouvndary-layer ﬂsplacement thickneas f (r - pw)dy’)
. Jo _

boundary-layer momentum thickness (f pw(l - w)ay*

wave number of boundary-layer disturbance (2mn/a%)

_2x
A% /8
_ 2x
A* [0
Po* ug* 8
Reynolds number
¥*
H]_o
po* un* 6
%
l-’-lo

Mach number . F""_-

5
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1. PRELIMINARY CONSIDERATIONS

In the first phase of this investigation (reference 8) the
gtability of the laminar boundary-layer flow of a gas l1s analyzed
by the method of small perturbations, which was already so suc-
cessfully utilized for the study of the stability of the laminar
flow of an incompressible fluid, (Bes reference 5.) By this
method a nonsteady gae flow is investigated in which all physiocal
quantities differ from their values in a glven steady gas flow
by sumall perturbations that are functions of the time and the space
coordinates, This nonsteady flow must satisfy the complete gas-
dynamic equations of motion and the same boundary conditions as
the' given steady flow. The question is whethor the nonsteady flow
demps to the steady flow, oscillates about it, or diverges from it
with time - that is, whether the small perturbations are damped,
neutral, or self-excited &isturbances in time, and thus whether
the given steady gas flow 1s steble or unsbtable. The analysis is
particularly cohcernod with the conditions for tho exlstence of
neutral disturbances, which mark the transition from stable to
unstable flow and define the minimum criticel Reynoclds number,

In order to bring out some of the principal features of the
stability problem without becoming involved in hopeless mathe-
matical complications, the solid bowmdary 1s taken as two dimen-
gional and of negligible curvature and the boundary-layer flow is
regarded as plane and essentially parallel; that is, the veloclty
component in the direction normasl to- the surface 1s negliglible and
the veloclty component parallel. to the swrface is a functlon mainly
of the distance normal to the surface. The small dlsturbances,
vhich are also two dimensional, are analyzed into Fourler com-
ponents, or normal modes, periodlc in the directlon of the free
stream; and the amplitude of each one of these partial osclllations
is a function of the distance normal to the solid swurface, thad

is;. e = m f(y) ei@(x-ct).

- In the study of the stabllity of the laminsr boundary layer,
it will be seen that only the local properties of the "parallel"
flow are significant. To lnclude the varlation of the mean veloclty
in the direction of the free stream or the velocity component normal

6



NACA T No. 1360

$o the solid bowndary in the problem would lead only to higher oxder
terms in the differential equations governing the disturbances,
since both of these ractors esre inversely proportional Lo the local
Reynolds number based on the boundary-layer thickness. (See,. for
example, reference 2.) By e careful analysis, Pretsch has shown
that even with a pressure gradisent in the direction of the frse
. stream the local mean-velocity distribution alone determines the
stabllity characteristics of the lccal boundary-layer flow at
- large Reynolds mumbers (reference 9). Such a statement applies
only to the stabllity of the flqw wlthin the boundary layer. For
the interaction between the bound.ary layer and a main "external®
supersonic flow, for oxample, it is obviously the variation in
boundary-layer thic]mess and mean velocity along the surface that
is significant. (Seo reference 10.).

The aforementionsad cons:.derations also lead quite maturally
to the study of individual. par’cial oscillations of 'bhe

form f(y) eia,(x-ct) Por which the differential equations of
disturbance do not contain x and 1t explicitly. Those partial
oscillations are ideally suited for the gbudy of instebillity, for
in order to show that-a flow is unstable it is unnecessary to
consider the most general posalble disturbance; in fact, the
slmplost will suffice, It 1a only necessaxry to sho¥ that a
-particular disturbance satisfying the equations of motion and the
boundary conditions is self-excited or, in this case, that the]
Imaginary part of the complex phase velocity ¢ is positive.

In reference 8 the differential egquations goverming one
"normal mode of the disturbances in the laminar boundary layer of
a gas were derived and sbtudied very thoroughly. The complete seb
of solutions of the disturbsnce squations was obtained and the
physical boundary conditions that these solubions satisfy were
investigated., 5 was found that the final relation between the
-values of ¢, o, and R +that determines the possible neutral
disturbances (limits of stability) 1s of the same Torm in the
compresgible fluld as in the incompressible fluid, to a first
approximation. . The basig Tor this result is the fact that for
Roynolds mumbors of the order of those encommtered in most aero-
dynamlc problems, the temperature disturbances have only a negligible
effect on those particular velodlty solutions of the disturbance
equations that depend primarily on the viscoslty (viscous solu-
tions). To a . first approximation, these viscous solubtions there-
fore do not depend dlrectly on the heat conductiviby and are of
the sams form as in the incomprossible fluid, except that thoy
involve the Roynolds number based on the kinomatic viscosity noar
the solid boundary (whero the viscous forces arc important) rather
than in the froe streem. In this first approximation, the second

7



NACA TN Wo. 1360

viscosity coefficient, which 1s a measure of the dependence of the
pressure on the rate of change of density, does not affect the sta~
bility of the laminar boundary layer. From these results 1t was
inferred that at large Reynolds. nwbers the influvence of the viscous
forces on the stability ls essentlally the same as in an incom-
pressible fluid, Thig inference ls borne oul by the results of the
present paper. ' ' .

The - influence of the inertial forces on the stability of the
laminar boundary layer is reflected in the behavior of the asymp-
totic inviscid solutiong of the disburbance squations, which are
independent of Reynolds number in first approximation. The results
obtained in referonce.8 show that the behavlior of the inertial
Torces ls dominated by the distribution of the product of tho mean

denslity and mean vorticity pg'-;!- across the boundary layor. (Tho

gradient of this quantity, or %(p%), which plays the same role
ag the gradient of the vorticity-in the case of an incompressible
fluld, 1s a measure of the rate at which the x-momentum of thoe :
thin layer of fluld near the critical layer {(vhere w = c)
increases, or decreases, because of the transport of momentum by
the disturbance.) In order to clarify the behavior of the inortial
forcos, the limiting case of an inviscid fluid (R—y ) is studled
in dotail in roferencs 8. ' The following gomeral criterione are

obtalned: (1) If the guantity %(p%’ vanlshes for somo value

of w>1 - I%’“" then neutral and self-exclted subsonic disturb-
; ;
5 _

ances exist and the inviseid compressible flow is unstablo.
(2) If the quantity %Gg’—;) does not vanish for some value

of w>1 -~ b-]&f-, thon all subsonic disburbsnces of finite wave
0 : . : :

longth are damped and the inviscld comprossible flow ie stable. .
(Outsido the boundsry layer, the relative velocity: bebtweon the mean’
flow and the x~component of the phaso veloclity of a subsonic dis-
turbance is loss than the mean sonic velocity. Tho magnitude of
such a dizturbence dios out exponentially with dlstance from the
solid surfaco;) (3) In goneral, a disturbance gains onergy from

the mean flow if %(pg-g:) is poslitive at the crltical layor

(vhore w = ¢) eand losos energy to the moan flow if [:-y (pz"-—-;r ] <0.

W=C

8
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-

The general stabil:tty cri'berions for inviescid compressible
flow glve scme insight. info ’ghe effect of the inertial forces on
“the stability, bub the;y' cannot be taken over bodily so the real
compressible fluld. - Of course, if a flow is wnsbeble in the .
limiting case -of an infinite Reynolds number, the flow is unstable
for a certain finite rangs.of Reynolds number, - A compressible flow
thet is .stable when R-—3®, however, is not necessarlly stable
at all-finite Reynolds num"bers vhen the effect of viscoslty is
teken into aceount, One of the ob,jects of 'bhe _pa:'esent paper ‘is
‘o settle 'bhis quostion.

On the 'basis of the sta‘bili‘by criterions o'btained. :I.n refeor-
cnce 8, some genersl statements were mede concernling the effect of
’chermal conditions at the solid boundary on the gtability ‘of laminar
bounﬂary—layer flow. It is concluded from physical reasoning and

d
a study of 'bhe equa’cions of moan motion that tho auanti'by e p-y

. ay\ dy
vanishes for some value of w > G _f ( ) - 0, +that id, if

heat is aé’.ded. %o the fluld tlrrough the solid. suri‘ace or if the

' sw:face 1g. :Lnsulated I:E_‘ (gl’) >0 and is suf:f‘*ciently large,
S y

. 1 . .

that- is, if heat 1is ylthdrawn from the fluld 'through the solid.

surface 4t a suffir'ient rato, the quant1+v -— ( D } nevar vanishes.

-

Thus, when (-) s ,.- the laminar 'bound.ary-layer flow is desta-
. ' B 13

'bilized 'by the action o:E' the inertial forces bu‘b stabilized.
through the increage of kinematlc viscosity near the solid surface.

When -a-: > 0,  the reverse .is trus.- The guestion of which of
X
1.
these sffects 1g predom.,nant cén be anawerefd only by further s'budy
of the stability problem in a real compressible fluid :

In the present paper this invesﬁ* gat on ie con'binued along 'bhe
following,liness .

(1) A s’oudy 18'made OF how the general crlterions for insta-
bility in an inviscid dompréssible Fluild sre modified by the -
introduction of a small viscosity (stability at .veory large
Reynolds numbers) :
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(2) The conditions for the existence of neutral disturb-
ances at large Reynolds number are examined (study of asymp-
totic form of relation between eigen-values of ¢, «, and R).

{(3) A relatively simple expression for the approximate
value of the minimum critical Reynolds nuwber is derived;
this expression involves the local distribution of mean
velocity end mean temperature across the boundary layer. This
approximation will serve as a criterion from which the effect
of the free-stream Mach niumber and thermal conditions at the
solid surface on the stabllity of laminar boundary-leyer flow
is readily evaluated. The quostion of the relative influence

of the kinemstic viscosity and the diatribution of o% on
gtability would then be settled.

(4) The energy balance for smell disturbances in the real
compresasible fluld 1s considered in an attempt to clarify the
physical bagls for the instebility of laminer gas flows.

(5) In order to supplement the investigations outlined _
in the four preceding paragrephs, dotalled calculatlions are
made of the limits of steblility, or the curve of o against R
for the neutral disturbances for several representative cases
of insulated and noninsulated surfaces. The results of the
calculations are presented in figures 1 to 8 and tables I
to IV. The msthod of computation of the stability limits 1s
briefly outlined in reference 8, although the calculations
were not carried out in that paper.

In the -present investigation the work of Helsenberg (refer-
ence 1) and Lin (reference 5) on the stability of & real inconm- .
pressible fluid is naturally en indispensable gulde. In fagt, the
methods uvtilized in the present study are analogous to thdse
developed for an incompressible fluld.

The present paper is concerned only with the subsonic disturb-
ances. The amplitude of the subsonic disturbance dies out rapidly
with distence from the solid boundary. In other words, the neutral
subsonic d&isturbance is an “eigen-oscillation" confined mainly to
the boundary layer snd exlsts only for discrete eigen-valuves of ¢,
o, and R that determine the 1limits of etability of leminsr
boundary-layer flow. Disturbances classified in reference 8 as
neutral "supersonic," that is, disturbences such that the relative
veloelty between the x-component of the phase velocity of such a
disturbance and the free-stream velocity 1s greater than the local
mean sound speed in the free stream, are actually progressive sound

- 10
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waves +that impinge obliquely on the boundery layer and are reflected
with change of amplitude. XFor dlsturbances of this type the wave
length and phase velocity are obviously completely arblirary (eilgen-
valuss are continuous), and these disturbances have no significance
for boundary-~layer stabllity.

When the free-stream velocity is supersonic (Mo > l), ‘the
gubsonic bowndary-layer dlsturbances must satlsfy the requirement

— — 1
that w ¥ - c* <ag¥ or c>1 v (for My< 1, c__Z_O). Now,
- o
by analogy with the case of an incompressible fluid it ls to be
expected that for values of ¢ greater than some critical value of oo

say, all subsonic dishurbances are damped. Thus, when M, > 1,
there is the possibility that for certain msan veloclty-temperature

distributions across the boundary layer, noutral or sgelf-excited
disturbances satisfying the differential equations of motion, the

1
boundary conditions, and, also, the physical requirement that ¢ > 1- ﬁ-o

cannot be found. In that event, the leminar boumdary flow is stable
. at all Reynolds numbers. - This interesting possibility is investl-
goted in the present papex. :

2, CALCULATION OF THE LIMITS OF STABILINY OF THE LAMINAR

BOUNDARY IAYER IN A VISCOUS CONDUCTIVE GAS

In order that the complete system of solutions-of the differ-
ential equations for tho propagation of small disturbances in the
laminar boundary layer shall satisfy the physical boundary condi- -
tlons, the phese veloclty must depond on the wave length, the
Reynolds number, and the Mach number in a manner that is determined
entlrely by tho local distribution of mean velocity and mean tempera-~
ture across the boundary leyer. .In other words, the anly possible
subsonic disturbances in the laminar boundary layer are those for
which there exists & definits relatlon of the foxrm (referonce 8)

c = c(c., R, Moe) - (2.1)

Since «, R, and M02 are reaml quantities, the rélation (2.1) is
equivalent to the two relations

LS
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o, = or(u., R, M%) (2.1a)

ey = ci(oa, R, Moa) "(2.1b)

The curve ci(oc., R, Moa) =0 for o= cn(R, Mog)) for the neutral
disturbances gives the limits of stabllity of the laminar boundary
layer at a glven value of the Mach pumber, From this curve can be
determined the value of the Reynolds number below which disturbances
of all wave lengths are damped and sbove which self-exclted disturb-
ances of certain wave lengths appesr in a glven laminar boundary-
layer flow. : . '

In reference 8, 1%t 1s shown that the relation (2,1) between
the phase velocity and the wave length takes the following form:
2(, o, ¥58) = F(2) (2.2)

In equation (2.2), F(z) 1z the PietjJens function (reference 11)
defined by the relation '

L T E i

F(z) = 1 + e {2,3)
1/ (1) |2 3/2
z£ t 211_1_/.3 {3(1;) }ag
where | " -
aRwat 1/3 .
z = <‘T>'"” (v - T1) - (2b)
[+}

and the quentity I, /3(1) 1s the Hankel function of the first kind
of order 1/3. The prime depotes differentiation with respect
to y. The function E?a., ¢, M,2), which depends only on the

ie



NACA TN No. 1360

asymptotic inviscid solutions ¢ and @ (section & of refer-
ence 8) and not on the Reynolds number, ls defined as Ffollows:

P11 Prp' + BPip

Poy;  Poo' + BPop

(yl - _yc) E(or,, c, M°2)= , 5 (2.5)
Ty@p' + Mo W tePry
P10" + BPp |
Tl" M0202 ¢
Ty@1 ! + M2wy Toppy s
Pop” + PPop
Ty - M 22
where
B = a\[l - M 2(1 - ¢)2
%= (75 > (2.6)
i, J = l, 2 ) . -

and 'Yl and, y, axe the coordinates of the solid surface and the
"edge™ of the boundary layer, respectively.

The Tistjens function was careﬁl‘l.y recalculated in reference 8,

1
and the real and imsginary parte of the function &(z) = T-f‘-f__)
- Mz

are plotted in figure 9. (The function &{z) 3is found to be more
suitabl§ then PF(g) for the actual calculation of the gtablility
limite. . -

The inviscid solubtions Py and 9, were obtained as power

series in o° as Tollows (section B of reference 8):

13
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. o0 . )
(Ple; a'e’ Cs Moa) = (w - ¢) Z u?nh'an(y; ¢ Moe) 2.7)
n=0 .

'q>2<y; 2, o, Mo w (v - c) Z Enkam_l(y, c, M, ) (2.8)

110

vhere for n 21

y : J 5
T W - C)
h2n<y3 c, MOE>= [( E-M ]dy g__._.___%_e(y; c, Moe)dy

and.

and for ngl

(w-0)2

k&n+l(y3 S Moe)"fy [ Moe]q"ry(w- o) Lo 1(3’: c, Mg )dy (2. 10)
F1 U3

v

and

v
2 T 2
oo o) [ [ ]

7 W - c)

1
The lower limit in the integrals is taken at the surface merely
for convenience. When y >y,, the path of integration must be
taken below the polnt y =7 c in the complex y-plane. The power
series in of are then uniformly convergent for any finite value
of a.

1L
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At the surface, the inviscid solutions are readlly evaluated

(Pll = Wl 3
Pyt =]
} ) (2.11)
Ppy = O
' 1 2 o
Py’ = ';@1 - ¥ °) )

At the "edge" of the boundary layer, the inviscid solutions axe .
most convenlently expressed as follows:

c) }: a.gnﬂen(c , M°2> ]
n=0

(1

P12

8
]

o |

. »

= (2 °)Z“ AL MO)
n=0

o : N '1 “M 2(1 - )21 . - p(2a2)
i t _ _ -~ o - ° 2
(Ple = (l C) [ (l - 0)2 ];. & On-l c, MO )
1 - M2 - c)e]
*=(1-c) , M2
Ppp c_[ o Zaanx,mc M 2)

15
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where . ‘
2 . 2 7
Hy (65 M2) = non (Fas ©5 M, )
H, = 1.0
2
LR G Moe) = k2n+l(y2; c, M, )
- T 2 21t ' (2.13)
o 1 -M, (l - ¢c)=| o > .
i o, M) = n '(&2; o, M, )
2n-l o (1 - C)Q on
u 2 o1
o 19 - ' )
L (1 -¢c)2 :
E, = 1.0 )

With the ald of equations (2.11); the expression for E{d,, c, MOE)
can be rewritten as follows:

‘ w, Ho '+5CP22 N K
o o %) - Ay ——CE )

vy (B! + POp) + ;E (P12" + Borp)

where

]

Me) = 2 (yz i yl) -1

(2.15)

The relstion (2.2) betwesn the phase velocity and the wave length
1s brought into & form more sultable for the caleulation of the .
etability limits by making use of the fact that for real velues

of ¢ the imeginary part of E@, c, MOE) is contributed largely

16
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by the integral Kl(c, Mog). (The procedure to be Followed 1is

ldentical with that used by Lin in the limiting ‘cese of '
the incompressible fluid (reference 5, part III)..) Define the
function ®(z) by the relation -

kN

3(z) = TTF (2.16)
Then,
_ 3 . (a+ 1v)
o(z) = T () 1+ a{u + iv) (2.17)
where
'nTl'G CPQE’ + queé .
e+ ivae 14 (2.18)
Ty \Pp' + BP0
Equation (2.17) is equivalent to the two real relations ‘
(1 + A)v
& (z) = :
) = 73 a2 ¢ AZR (2.19)
@r(z) - (1) (1l + an) + Ave (2.20)
(1 +2)2 + 232 ] -~

The real and imaginary parts of ¢(z) ave plotted against z in
figure 9.

The dominant term in the imaglnary part of the right-hand side
of equation (2.18), which involves K, {e, MOE), is extracted by means
of straightforvard algebraic trans_nf:orma'bions. Relation (2.18) becomes

7
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v e 6 I\ ( - ol 1-02 N\ & En/ i
G+

1+ iv= T—— ] " ty - @ - (2.21)
1 1 ® N Vl M 2(1 - =
| 2n.
| S ) BT G5 )
1 . o2 ) (1 -¢)2 . ol /
whore
Fy= Hy
and for h_;fB - , .
M=Ky -5 (2.228)
Moo LE - T, S (2.220)
When c¢ -ig real,
wle
h) ﬂl—- I.P. Kl
Ty

for those values of « and c¢ that occur in the stablility caleulations.- (This approx:lm’%ion is
Justified later in appendix A,) The imaginary part of the integral. Kl(c, MOE) is readily compubed.
Tt 1s found thet

. COtT *ON NI YOVN :
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IP ch,Ma)z.jn( )S{dy -—)]

=-1t-——--.-——-(—-—---—-- ‘ (2.23)

(=)2N

Now A{c} 1s generally quite small, therefore ®;(z) can be
taken equal to v(c) and &,(z) can be taken equal to u as a
zeroth approximation., From equations (2.19) and (2.20), when ¢

is real
o le T w.,B . op
@iQO)(;(O)) N 1 f 5 c' _ 'c (2.2%)
B! . (wc ) ¥e e

L) g (9 (L0) (2.20)

By equation (2,2h), z(O) 1s related to c with the aid of figure 9;

and by equation (2.25), 1'1(0) is also related to c¢. The guantity eR
is connected with ¢ by means of the.ldentity

: v N3
‘6R = —iC <”’l> o (2.26)
w11+ M3\ e ’

and the corresponding values of o &ar®e ob'bained from equation (2.21)
(slightly transformed) by a me'l;hod. of successive approximation.e

. 19
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Thus,
w'e TS R
I (1-G232) © {1 -c)® G_Z o —Z aenﬂweml
s - _ (2.27)
(‘,Ll-L) l-z m%;\[lfbiég(l -0)" (ﬁlpi Gam.len.;._'D
n=2 - . (1* 0)2 n=1
where

w,tc . Ky o
L= 2= RP (K +—2-)

(The symbols My and N-k .now designete tho real parts. of the
integrals M and Ny.) ‘The iterstion process is begun by taking
a suitable initial value of o on the right-hand side of squa-
tion (2.27). The methods adopted for computing tueso integrals

when the mean velocity-temperature profile is lmown are described
In appendixes A to C,

For grester accurecy, the values of z and. u for a given
real value of c¢ are camputed by successive gpproximations. From
equations (2.19) and (2.20),

.'Qi(é"'l) (z(n+l)) = | .(l'+ Liv- | (228) .
- (1 + Nu(n))(' + 2542 .
( ' (1-+'A.u(n))2 + KEVQ A 2
4 n+l). - Qr(n-t—l) (z(n-:-l)) _ ' _ . v (2.29)

(1 + ) (l + Xit(n)> 1+ auln)

The velue of v is always approximated. by relation.(e.Eh),

. Curves of wave mumbor agsingt Reynolds number for the neutral
dlsturbance have been caleulated for 10 representative cases
(fig. 4), that 1s, insulatod surface at Mach numbers of 0, 0.50, \
0.70, 0.90, 1,10, and 1.30 and heat transfer across the solld surfsace

20
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at a Mach mumber of 0.70 with values of the ratio of surface tempera-
ture to free-stream temperature Ty of 0.70, 0.80, 0.90, and 1.25.
{It is Pound more desirable to base the nondimensional wave nueber and
the Reynolds number on the momentum thickness 6, which is a direct
measure of the skin fricktion, rather than on the bowndary-layer thick-
ness &, which is scamewhat indefinite.)

In figure 5 the minimm criticel Reynolds mumber Reor , or the

. min
gtability limit, is plotted egainst Mach number for the Insulated
surface; and in figure 6(a) P.ch ‘is plotted against  T; for

_ min
the cooled or heated surface at a Mach number of 0.70., The marked
stabilizing influence of & withdrawal of heat from the fluid is
clearly evident., Discussion of the physical significance of these
numerical results is reserved untll after goneral criterions for
the stability of tho laminar boundary leysr have been obbtained.

3. DESTABILIZING INFLUFNCE OF VISCOSTTY AT VERY LARGE REYNOLDS
NUMBERS; EXTENSION OF HEISENBERG'S CRITERION - '
PO THE COMPRESSIBLE TLUID '

The mumerical calculation of the limits of stability for several
particular cases gives some indicabion of the effects of free-streanm
Mach number and thermasl conditions et the solid surface on the sta- -
bility of the laminar boundary layer. It would be very desirable,
howsver, to estgblish general criterions for laminar instability.

For the incomproessible fluid, Helscenboerg has shown that the influence
of viscosity 1s generally destablilizing at very large Reynolds
nwmbers (reference 1). EHEis criterion can be stated as follows: If
a neutral disturbance of nonvenishing phase volocity and finlte wave
length exists in an inviscid filuild (R—>®) for a glven mean veloclty
distribubion, a disturbance of tho same wave lengbh is mmstable, or
gelf-excited, in the real fluid at vory large (but finite) Reynolds
muboers. ’

The same conclusion can bo drawm from Prandtl’s discussion of
the enorgy balance for small dietirbances in the laminar boundary
layer (reforence 12). : S

Helsenberg's criterion is established for subsonic disturbances
in Yhe laminar boundary layer of a compressible fluid by an argument
quite similer to that which he gave origlnally for the incomprossible
fluid end which was later supplemented by Lin (reference 5, part ITI).

21
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At very large Reynolds numbers, the relation (2.1) between the phase
velocity and the wave length can be Gcrsiderably simplified. When M
1s finlte and ¢ does-not vanish, fz}>> 1 -at large Reynolds.
numbers.  The essymptotic behavior of the Tistjene funotion F(z)

ap  jzl--d 38 given by (reference 5; pert I) .

S oL/t
(71~ %) Fla) = ——= (3.1)
L —~— C
Ve
and the relation (2.1) becdmes o
i /4
( I:‘ - yc) (m, C, MOE) }!11(0.':, C, M ) (3'2)
1/ R
o~ C
Ve
' 2 - o 1l
~vhere Efa, c, .M, is given by oguation (2.14).
© Suppose that a neutra'l disturbance of nonvenlshing weve
% : L2 ) -1 S
nwnber gy =_.i-3t- and phaee veloclty >l - i;f— existe in 'bhe
.

inviscid fluta ( 'Limiting cagse of an infinite _Beynolds num:ber) "The
phase velocity ¢ . 1s a conbinuous function of R, and for a dis-
'burbanue of glven wave number % the vaelue of. c¢. at very large

. Reynoui;—* numbers will di*’ier fram' c,° by a smald increment Ac.
8

Both sides of equation (3.2) can be doveloped im a Taylor's series
in "Ac, and an expression Tor Ac can be obtsined as follows:

' o
: Lo 2\ L : 2) 2 ;
El(d‘.’ C. MO ) = El(?’ﬂ’ GS"Mo- (é';‘"’> JAY IR S
CB)G'S . ’

_eni/k o : -
2 [1 4+ 0(2c)] - - (3.3)
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The boundary condition

q)22l (a's; ) Moe) + 35(922 (a's:' Cqs Moa) = 0 (3.4)

must be satlisfied for the inviscid neutral disburbance, and the

functien El(cas, Cas M02) vanishes (equation 2.14). Recognizing
that .

(3.5)

From ‘equation (2.14),

(3.6)

d [ 2 2
= {o Ha , c, M")+Bo c, M ]
( BEl) = - Osz{ac 22 ( 82 7 7o ) 22 @B, > o ) c=Cgq
d - .

23
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By equations (2.12) end the bowmdary comdition {3.4), the gquantity (—a-c—]') ig evaluated as follows:
) Gy Ol '
/. \ 8’

BEl)
dc OgrTy

2(1 Cq

o (oD o AT 30 e = WT D)

Ty

(: -csfga.f“”ﬂgn(cs,mfj N -Vl-moa(l-cs)‘*;ms&ﬁzn__l (ca,moa)

where the primes now dencte differentiation with respect to c.. Forr-small valuss of" cg and @y, ‘the

&: .
gquantity- ( ]> i8 given aprroximately by the relation

¢ ﬂ,% | |
BB\ cE,E 2= ML - o | | |
<§£_> T [ ( +Kl (s’ Mo2
. Cgs Oy I- (1 -c ) V Moa(l - c

~~
w

(3.8)

23—
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and the expression for Ac is

T, ag Y1 - M2(2 - oY Nk

R _5 2 - MB(1 - 05)2

%_';;;; e c- °a)3 +a \/1.- Moe(l - cs)g Kl'(cs, Moe)

(3.9)

Evalvation of the integral Kl@ R Mf) yields the following resulbs

56wk )
K, {c, M%) = - + —{ — (In ¢ ~ i) + O(1)  (3.10)
;l. o) wl_'c -(Wc:)3 dy \T =

_ | ' . |

Since the gquantity F—"—- (%L} vanishes (reference 8), differ-
: ay w=Cg '

entiation of equation (3.10) gives

. T 3 p 2 a /w! ] . N -
VAN YO S A LN {..(..)] ) 1n o ~1x)40(2)
| 1 (cs o) Wl‘,c52+ o ("’c')3 ay \T 'w-—-cf/c nc(‘l.cs n)+

(3.11)

Thus, K_L'<cs, Mog) is approximately real and positive for small

1
values of c,. With ¢y > 1 - ik I.P. &c mwat also be positive
' o]
(equation (3.9)); therefors, a subsonic disturbance of wave
lengbh ks ¥ 0, vhlch is neubrel in the inviscid campressible

fluid, is self-exclted in the real compressible fluid at very large
(but finite) Reynolds numbers.
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In reference &, it was proved that a noutral subsonic boundary-
layer dlsturbance of nonvanishing phase velocity and finlte wave
length exists in an inviscid compressible fluld only if the quan-

Y 1
tity -q'-- pé}- vanishes for some value of w> 1 - —, If this
dr\ dy M

(o]

condition is satisfled, then self-exclited subsonic disturbances
also exist in the fluid, and the leminer boundory layer is unstable
in the .limiting case of an infintte Reynolds number. By the exten-
slon of Helsenberg's criterion to the campressible fiuid, i1t can be
geen that, Tar fram stabilizing the flow, the amall viscosity in
the resl fluld has, on the contrary, a destabilizing influenco at
very large Roynolds numbers. Thus, any leminar boundary-layocr flow

in a viscous conductive gas for which the quanbity :—-;_ (pg) vanishes

1 )

for some valve of w> 1 T is unstable at sufficiently high (but
- _

finite) Reynolds numbers.

Unlese the condition i— éd-“?-) =0 for some valug of w> 1 - —Jl—
ay \ dy M

o]
1s satisfled, all subsonlc disturbances of finlite wave length are
damped in the limiting case of infinlte Reynolds number, snd the
invisecld flow im steble, Since the offect of viscosity 1s des-
tabilizing at very large Reynolds numbers, however, a laminar
boundary flow that is steble in the limit of infinite Reynolds
number is not necessarlly stable at large Reynolds numbers when the
viscosity of the fluid is considered. %goo fig. ¥(1).) In fact,
for the incompressible fluid,Lin has shown that overy leminar
boundary-layer flowv is ungtable at sufficiontly hilgh Reynolds
2

numbers, whethor or mot the vorticlty gradient 2w vanishes (refer-

- dya
ence 5, part III). TIun order to settle this question for the com-
prossible £luid in goneral berms, the relation (2.1) betweon the
complex phase velocity and the wave lengbth at large Reynolds numbers

must now be studied for flows in vhich tho quantity %—-y Z’-—;

doos

not venish for any valus of w S 1 =~ —:E-—
o]
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‘%, STABILITY OF LAMINAR BOUNDARY LAYFR AT LARGE REYNOLDS NUMBERS

The neutral subsonic disturbance marks a possible "boundary"
between the damped and the self-excited disturbance, that 1is,
between stable and unstaeble flow. Thus, the general conditions
under which gelf-exclted disturbances exlat in the laminar boundary
layer at large Reynolds numbers can be determined from a study of
the behavior of the curve of o« against R for the nsubral
disturbances, When the mean free-stream velocity 1s subsonic (M0< J) s

the physical situation for the subsonic disturbences at large
Reynolds numbers is gquite similar to the analogous situation for
the incompressible fluid. The curve of o against R for the
neutral disturbences can be expected to have two distinct asymptotic
branches that enclose a region of instability in the «,R-plane,
regardless of the local distribution of msan velocity and mean
temperature across the boundary layor. When the mean free-stream
veloclity 1s supersonic (Mo > l) the situation is somswhat dif-

ferent; wnder certain conditions (soon to be é.efineg.) a neubral

or a self-exclted subsonic disturbance c>1 - L-J;—— cennot exist
(o]

at any value of the Reynolds number. For this reason, 1t 1s more

convenlent to study the case of subsonlc and supersonic free-stream

veloclty seperately. : '

a. Subsonic Freo-Stream Velocity (Mo < 1)

'The asymptotic behavior at large Reynolds numbers of the curve
of o against R for the nbutral disturbances is detormined by
the relations (2.19) to (2.22) betwoen @, R, and ¢ for real
values of c. For small values of « and c, +hese relations
are given approximately by

. ' ‘1’2 t '
R -
1 W' \ o :

u = 0,(z) (1.2)
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1.76
o b7

S (’:’)3("’1')2 (4.3)

wyfe 1 -
&= e 1.M201 - )2 (h.4)
Tl n o . ) - _

A8 R——¥o,  either z s o or 2z ranains finite wvhile . ,
both o and ¢ approach 0. These two possibilities correspond
to two asymptotic branches of the curve of « sgainst R.

brefichs« If 2z remafns finlte as R—> e, then c -—30;
and by equation (k4,1), @i(z)-—-}O. Therefore, z-—»2.29 while
u-—32,29 (fig. 9). From equations (4.3) and (4.4). along the
lower branch of the curve of against R for neutrel stability

oo ()6 - )" = | (4.5)

1.24 4

T
c =2.29 X o (k.5)

wl'_\JJ. - M2

and «—30 at large Reynolds mumbers (fiz., (1)),

Upper brendh.- Along the upper branch of the curve of o
agalast for neutrsl stadility, 2z -—3w and

rwy fe '1'02 a /w\1 1 Wyt
R € FUACY ) e i
c W0 VQZS 2«.6-'- c3

c

$4(z) = -

28
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o i a /!
while u-—>1.0 (fig. 9 and oguation (4.2)). TIf the quantity E =

does not vanish for any value of w > O, <then by egquation (k. 7)
¢ must approach zero asg z—>®, Along this branch,

()~ G- “Qs/ (4.8)
2“2,_[, 5.2k 2 6 : !
=S 1}
cw 1 o (k.9)

\{ 2
wl' 1l - M0

and. a-=-»0 ab large Reynolds numbers (fig. 4(1)).

t
On the other hand, if 4 venighgs for some value

ay\? .
" of w=.cg >0, then by equation (4.7), ¢—>cg &and o~ O

oth z and R approach . Now,
s w‘> [ > > > n 052

— ] = ooy imes ——f qu— N + e &
6-3'(;3 4 d:ré{;l ¥y ;{;‘x 2(10’ N2

W=C
dE A .
If ?C—D does not vanish (see appendix D), then by equa~
L .

“tions (L.4t) and (4.7), along the upper branch of the ciwve of «
against R for the neutral disturbances, .
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(s ) M C(h.11)

2“2,1; o. 21-1- d.2 ()l c - CB)Q

¥ 2(1 - c)2 | (4,12)

end c-—3c £ 0, A ;! 0 at large Reynolds numbers.(figs. 4(k)
and 4(1)). Ir [ <> vanishes, the relation (4.11) is replaced

by

02 e Foo® (20,2
| =)

which reduces to the relation obtalned by Lin in the limiting case
of an incompressible fluld wvhen MQ-—--)O the solld boundary is

insulated, and +' = 0 ‘for some valus of w = oy > 0. (See equa-’
tion (12.22) of reference 5, part III.) :

(4.13)

!
If the quantity 9'—-(‘1—) venishes at the solicl boundery (that

is. for w=0), it can be shown from the equations of motion

{appendix D) that (—--)] 1s always positive - except in the

liniting case of an incompresaible fluid, For ecmaJ_l values of ¥,
t o]
the quantities g-; (g;) and -;g— are both positive and increasing.

30
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t , .
For large values of ¥y, however, ;--—90, physically; there-

4

' . t .
fore %— must have a maximum, or -Z'—y(;—) = 0 for some value

of w>0, and this case is no different from the general case
tresated in the preceding paragraph.. In the limlting case of an jincom-

. ‘ c
pressible fluid, when W' vanishes st the surface, wc“= wli'f. S
S 2(w ')
since wl" "' always vanishes in this case. From equation (4.8)

the relation between @ and R along the upper branch of the
neutral stability curve is therefore

b ) 1 2 -
R. z. (:::2 (w1iv 5 BT _O-hlh-)

which is identical with equation (12.19) in reference 5, part IIT,

I t
Thus, regardless of the behavior of the quantity g:y. -;L

regardless of the local distribution of mean veloclty and mean
temperature across the boundary layer - when My < 1, the curve
of o against R for the neubral disturbances has two distinct
branches at large Reynolds numbers. JFrom physical considerations 5
all subsonic distwrbances must be damped when the wove length is
sufficiently small (o large) or the Reynolds number is sufficiently
low. Consequently, the two branches of the curve of o against R
for the neutral disturbancés must Join evenbually, end the region
between them in the -«,R-plane is a region of ingtability; that is;
at a given value of the Reynolds number, subsonic dlsturbances with
wave lengths lying between two critical values )"l and >\.2 (cal

and me) ‘are self-excited. Thus, when M, < 1, ény laminar

boundary-layer flow in a viscous conductive gas 1s wmetablo ab
sufficlently high (but finite) Reynolds numbors.,

The lower branch of the curve of .¢ agminst R for the neutral

4
disburbances ls virtually unaffected by tho distribution of %y—(g——)
across the boundary layer, but for the upper branch the behavior of
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' a /w d [+
the quantity =—{-—] 18 decisive. When —=(-—) =0 for same
dy \T dy \T
vaelue of ~w = ¢, > 0, the neutral subsonic disturbance passes
contimuously into the characteristic inviscid disturbance c=cg
and o = ay a8 R—>cw., This result is in accordance with the

results obtalned in reference 9 for the inviscid compressible fluid
and 1s in agreement with Helsenberg's criterion. In addition,
. 2z
all subsonic disturbances of finite wave length A > Ay = = (and
3
nonvenishing phase velocity 0 < ¢, < cs) are gelf-oxclited in the
limiting case of infinite Reynolds mumber. On the other ham,

H .
when % g—) ‘does not vanish for any value of w> 0, then

except for the "singular" neutral disturbance of zero phass velocity
end infinite wave length (c = 0 and « = 0), all disturbances

are damped in the inviscid compressible fluld. This singular
neutral disturbance can be regarded as the limiting case of the
neutral subsonic disturbance in a real compressible fluild ag R-—yo,

b. Supersonic Free-Stream Veloclty (Mo > l)

When the velocity of the free stream 1s supersonic, the sub-
sonlc boundary-layer disturbances must satisfy not only the differ-
entlal equations and the bowmdary conditions of the problem bub

also the physical requ:lremen"b that C.. >1- %'I- The asymptotlc
5 )

behavior at large Reynolds mumbers of the curve of o against R

for the neutral subsonic disturbances is determincd by the approxi-

mate relations (4.1) to (4.4), with the additional rostriction

that ¢ > 1 --I%I» A8 c—31 - —;;—, o—3>0 by equation (L.L4);

o o)
'bhere’f'or_e R—>o» by equation (4.3). The corrosponding value (or
values) of z is determined by equation (k.1) as Tollows:

1
o -2) |
@, (z) = v{c) = V('%)’ e il E"(l) (k.15)
\ M Ty (w')3 &y \T w:c.—.l--.l- _
' My
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. ;
Now fram physical considerations, % (—%—) < 0 fTor large

LY

1
veluss of y. Therefore, if %(g—-) = 0 (changes sign) for same

!

value of w= ¢, > 1 - 9—'—-, - ‘then, in general, e (x >0

5 i ay \T N

Q
1=
M, .
e -
and 85(z) , <O (equation (k15)). From figure 9; 1% cdn De
C=l-——

. e
goen that in this case there is only one value of 2z (%3, say)
corresponding to the wvalue of Qi(z) given by equation %ll—.15) :

From equations (4.2) to (L.4), along the lower branch of the curve
of a ageinst R for the neutral distwrbances, -

1.767., \2, 3
T W Z 1
Rz (2) 75 il (4.16)

R l \ 3 (e 1)
| 1-ﬁ9
- . 0 - )
- 1 ’-——
' ———
" ( -M0> o d
o o~ \0 -

1 .
Tyvy ( i ﬁ:) (. 21)

, 1
and c—31 - R at large Reynolds numbers (fig. 4(k)). The upper
. . o _ .
branch of the curve in this case is given by equations (k.11)

= o ,
and (4.12), or by equations (k4.13) end (%.12) if [9——(1’-'-}
a7° \¢ /4,

vanishes, with c——>cg > 1 - and a—>ay ¥ O.
o)
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! 1
Ir a(x vanishes for w= 1 ~ <=~, then z-—>c0 as R-9®
ay \T : M,
along the upper branch of the curve of o against R for the
wy! '
1

neutral disturbances, and 04(2z)— ., Now a=—3>0

VEcn—-—ﬁ 3 _
c
a8 c—~—31l - -B-dji-— in this case also {equation (%.17) with W = 1.0)

o
go that

2(n )" uf 11

ep ety 10 [l AN )2 oo

Alung the lower branch of the curve of « against R at large

Reynolds mwnbers, &, R, eand ¢ are connected by equatiome (L.16)

and (4.17), with zy = 2.29 and w, = 2.29. In spite of the fact
a [fw'

that ==l =—}=0 for w= 1 - ..1_., a neutral sonic disturbance
dy \? M, .

l v
c=1- E—-) of finite wave length does not exist 1n the inviscid
7o

(k.18)

(o]

fluid unless X, (c) = z -4 2 |ay 1o positive. (See
fe} (‘W’ = 0)2 '

gection 10 of reference 8.) Calculation shows that Kl(c) is almost

always negative (equation (3.11)); therefore, in general, the sonic
disturbance of infinite wave length (a = 0) with constant phase
acrogs the boundary layer exists only in the inviecid fluid (R-—> ).

d wi .
If — |—] does not vanish for any value of w> 1 - -]-'—-, it
dy \T = M,
t
is certain that [i- (F—)] 1 < 0 and by equation (k4.15)
3y W=Cmle —
o}
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@i(z) . >0. When v];-]‘__ <.O..58O (approx.), there are two

O -M’o

values of 2z (z,) and z3, 'say, with Zg > Zp) ccrresponding to

the value of &;(z) given by equation (k.15), (See fig. 9.) Along

the two asymptotic branches of the curve of « against R fox-the
neutral disturbances, o, and c¢ are cormected by relations

of the form of egquations (11- 16) and (4.17), with z and u replaced
by zp emd wup, respactively, along the lowsr branch and by Z3

and u3 , Trespectively, along the upper branch., At a glven v&lue of
the Mach number, the value of v 1 is controlled by the thermsl condi-

l—_-—--
M, . .
tions at the solid surface. (See ssction _6.) Wheh these conditions ars
such that v 1 = 0.580, then Z- = Z_, and the two ssymptotic branches
. . J
1 M
(o]

of the curve of « against R for the neutral disturbences coin-
cide. When v 20.580 (approx.), it is impossible for a

l-a—-—

M,

neutral or a. self-excited supsonic aisturbance to exist in the
laminar boundary layer of a viscous conductive gas at any value of
the Reynolds number, In other words, if v 4 2.0.580 (approx.),

. . 1___ - . !

. My

the laminsr boundary layer is stable at all values of the Reynolds
number, (Of course, in any glven cage, the critical conditions
boyond which only damped subsonic disturbancesg exist can be cal-
culated more accurately from the relations (2.28) and (2.29).
See section 5 on minimm critical Reynolds mumber.)

The preceding conclusion can alsc Dbe deduced, at least qualite-
tively, from the resultes of a study of the energy balance for a
neutral subsonic disturbancs in the laminar -boundary layor. A
neutral subsonic disturbance can exist only when the destabilizing
offect of viscosity near tho solid surface, the damping offect of
viscosity in the fluld, and +he enecrgy 'bz-ans:f‘er between mean flow
and disturbance in the vicinity of the immer "critical layer" all
balance out to give a zero (average) net rate of changs of the’
ocnergy of the disturbance. (See Schlichbing's discussion for -
incampressible fluid in referenco 4, ) In reference 8 it is showmn
that the sign and megnitude of the phase shift Jn w¢' +through
the inner "critical layor" at w= c is determined by the sign
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and.magnitude of the guantity [ (;—-] « The corresponding {'
W=C .
epparent ' shear stress To * = -p* u*'v*' which is zeyo for w < ¢ In the

inviscid compressible fluid is given by the following expresslon

for w>c (reference 8),
[ ( )] (4.19)

-p*xfux %
jj»pj(%ﬂ Eﬂ

cr !
If the qnantity- [EL-<5L)] is negative, the mean flow absorbs
energy from the disturbance; if [é (;i)] is positive, energy
: dy V=C

passes fram the mean flow to the disturbance. In the real com-
pressible fluld, the thickness of the inner critical layer in which
1

(5)”
v

the phase shift' in w*' is actuslly brought aboult by the effects

of viscous diffusion (of the quantity p%?) through this layer.

the viscous forces are important 1s of the order of

As showm by Prandtl (reference 12}, the destabilizing effect
of viscosity near the solid sififace 1g 16 shift the phase of the

"frictional® component ufr*' of the disturbance velocity agminst

the phase of the "frictionless" or "inyisoid?'caméonenb g pe*

in a thin layer of fluld of thickness.of the order of

By continuity, the assoclated normal componsent vfr*f_-is of, the.

. (Tt wes shown_ in part 1 of
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reference 8, that for large velues of oR +%he "frictional®
compongnts of the disturbance also satisfy the conbinuity rela-
uH ! Syt

tion. s 4 =— = 0 in the compressible fluid.) The carre-
Ox* oy * : .

sponding apparent shear gtress . T1¥* = -pl* u*?y¥' is ziven by the

expression

® . TS | -2 a
I Y e R ] (k.,20)
1 po (o} — U
po* n ¥ A R :

Yy
But from equations (2,11)
u,,  *! p Y
inv 1 . 1 \
—— 18 f e ~ Pt = — o (k.21)
u_¥ 4 Tl - Mo c c

(k.22)

Since the shear stress assqci’atéd Wi"i:h the d.estabiiizing effect
- of viscoslty near the solid surface and the shear stress near the
critical layer act roughly throughout the same region of the fluvid, the
ratio of the rates of cnergy transferred approximetoly T* -g:-;r dy)
%

. . 0
by the two physical processes is
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. I' 2 -
B % * . -
Eq* T * 2 Tl ("c')S B

= -;- iv(c) | 23/2
whe:i'e

23201—- Z

V. (wl,)a

1 N
If the quantity %—5 (%—) is negative and sufficie;ltly large
~when W= Cqs B8y, then the rate at which energy is absorbed ‘by-

the mean flow near the immer "criticel layer" plus the rate at which

the energy of the disturbance is dissipated by viscous actlon more

than counterbalances the rate at whlch energy passes fram the msan

flow to the disturbance becauss of the destabllizing effect of

viscosity near the solid surface. Consequently, a neubral subsonic

disturbance with the phase velocity ¢ =>= ey does not exist; in

fact, 21l subsonic disturbances for which ¢ > ¢y are damped.

When Mo* <1, there is always a range of values of phase veloclity
B %

0Lck S o, for vhich the ratio EE‘; , glven by eq_uation (4.22),

is small enough for neutral (and self-excited) su'bsonic disturbances
to exist for Reynolde numbers greater than a certain critical value.
Vhen M, > 1, however, because of the physical requirement
that ¢ > 1 - =-S5 0, the possibility exists that for certain
M, : : .
t
thermal conditlions at the solid swrface the quantity [-g;’— (%—)]

W=C
. B *

is always sufficiently large negatively (and therefores E%l ig
1
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sufficiently large) so that only damped. subsonic disturbances exist
at all Reynolds numbers, OF course, if —-—(——) vanishes for-some

value of w_}_i - -;in, it is certain that v{c) ¢ 0.580 for some

0

range of values of the phase velocity' 1- -;T <c<e or In that

case, neutral and self-excited subsonic dis'burbances al'ways exist
for R >R, and the flow is always unstable et sufficiently
Tmin

high Reynolds numbers, in accordance with Helsenberg's criterion
as extended to the compressi ble fluid (section 2).

A-discussion of the significance of these results is reserved
for a leter section (section 6) in which the behavior of the quan-

tity %-y -;. will be related directly o the thermal conditions

at the SOlid. surface and. the free-gtream Mach number.
5. CRITERION FOR THE MINIMUM CRIILICAL REYNOLDS NUMBER

The obJect of the stability enalysls 1s not only to determine
the general conditions wnder which the laminar boundary layer is
ungtable at sufficiently high Reynolds nuwnbers but also, if possible,
to obtain some simple criterion for the limit of stabllity of the
flow (minimum critical Reynolds number) in terms of the locsl
disgtribution of mean velocity and mean temperature across the
boundary layer., For plane Couette motion (1insar velocity profils)
and plane Poiseullls motion (parabolic velocity profile) in an
' incompressi‘ble fluid, Synge (reference 13) was able to prove
rigorously that a minimmn critical Reynolds number actually exists below
which the flow is stabls. His proof applies also to the leminar boundary
layer in an incampressible fluld, with only a slight modification (refer-
ence 5, part III). Such a proof is more difficult to give for the laminar
boundary layer in a viscous conductive gas; howover, the existence,
in gonseral, of a minimum critical Reynolds mumber can be inferred
from purely physical considerations. A sbtudy of the energy balance
for small dlsturbances in the laminar boundary layer shows that the
ratlo of the rate of viscous dissipation to the rate of energy
transfer near the critical layer is 1/R for a disburbasnce of
glven wave length while the onergy transfer associated with the
destabilizing action of viscosity near the s0lid surface boars the

ratio 1/11—2- to the emorgy transfer near the critical layer. Thus,
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‘the effects of viscous dissipation will predominate at sufficiently
low Reynolds nvmbers and all subsonic disturbances will be damped.
The two distinct asymptotlé branches of the curve of a against R
for the neutrsl disturbances at large Reynolds numbers must Join
eventually (section 4) and the flow is stable for all Reynolds
nubers less then a certain critlcal value. . .

An estimate of the value of Ry Tgin , vhich will. serve as &

goability crilterion,is obtained by taking the phase. veloci'by c
%o have the maximum possible value c¢, for & neutral st_:.bepnic
disturbance, that is, for ¢ > ¢y all subsonic disturbances are
damped. This condition ie very nearly equivalent to the condition
that oR be a minlmm, which was employed by Lin foxr the case of
the incompressible fluld (p. 285 of reference 5, part III). The condi-
tlon c= e ocours when {? (z} is 2 maximum: that is, vhen <I>_i(z) =0.58,

= 3.22  and @r( ) = 1.48 (fig., 9). The corresponding valus
oi‘ c = o, can be calculated from the relatlions (2.19) to (2.22).

Neglec’bing terms in A2 (A is usually very small) and taking u=21.50
_ glves

o,(z) =[1 - &alef] v(o) . (5.1)

vhere

wi'e W' '
(¢) = - ' .2
.'vc ﬂ__Tl' [(w)3dy<> (5.2)

and

(e )
[+

x(c)

It -is only necessary to plot the quantity (1 - 2\)v agalnet—0a
for a given laminar boundary-layer Tlow and find the value of c = ¢
for which (1 - 2A)v = 0.580, The correspond.ing value of oR is
determined from the relation

(o]

Lo
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2 - PEET () () o0

and this value of dR im very close to the minimm valyp of doR.
A rough estimate of the value of o for ¢ = ¢, is giwen by the

following relation (eguation (2.27)):

o = Vl'_ca\fl B GRS M (5.5)

This estimated value of o ig, in general, too small, The
following estimnte of R is obtained by malcing an approxi.mate

allowance for this discrepancy and by taking round numbers:

25‘ [T(cb)]l‘Ys wl' . (5.6)

R
Crmin col"dl - M‘_;,E(l - co)2

or

TR,

By . . (5.7)
win chl - M, (1 - co)e '

For zero pressure gradient, the slops of the wvelocity profilé &t

o
the surface SE is glven very closely by (appondix B)

A

L1
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. <5'>1 (a“

),

- 0.332"
Ty
Therefore
s \qL.T6
T
R, =l ()] (5.8)
Crpin T

AJ 02(1 _ GO)EI

The expression (5.8) is useful as a rough criterion Tor the dependence
of Re on the local distribution of mean velocity and mean

Cl‘min
' temperature across the boundsry layer. It is immedlately evident

that By —bw when o,—>1 - . Whem [(1 - 2A)v] >0.5%,
Cx, nin MO c_l..!'_...
o

the laminer boundary layer 1s stable &t all valuss of the Re;gnold.s
number. (This condition ig an improvement on the stability condl-

tion v 2 0.58 (approx.) stated in section L.)
1-"“ . ' i
MO

In the following tables and in figures 5 and 6(a) the estimated
valves of Re given by equation ?WB) can be compared with the
“Tmin
values of Re faken from the calculated curves of tg ageinst Ry
Tmin -
for the noutral disturbances. For the lnsulated surface, the values
are - . : -

L2
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. Rg Rg
M % {c,) Cmin CTmin
© S (est,) {fig. 4)
o} 0.4186 1,0000 195 150
.50 . 400 1.0L08 170 136
.70 . 4600 1,0782 . 150 126
.90 L4850 ©1,1254 T 129 115
1.10 .5139 1.1803 109 10k
1.30 -, 5450 1.24k06 92 92

For the 'noﬁinsulate_d. surface when M_ = 0.70, the values are

R Rg
. Tl s 7 (Co) -ecrmin Crmin
’ (est.) (fig. k)
0.70 0.1872 0.7712 5377 5150
.80 2619 8716 1463 - 1440
"~ .90 .339% L9562 5k 523
1.25 ,5194 1,1:%k9 8 . 63

The expression (5.8) for Ro.. '~ glves the correct order of

. magnitude and the proper variation of the stability limit with Mach
number and with surface temperature &b a given Mach number.

The form of the criterion for the minimm critical Reynolds
number (equation (5.8)) and the results of the detailed stability
calculations for several representative cases (figs. 3 and 4) show
that the distribution of the product of the denslty and the

vofticity pg across the boundary layer largely detexrmines the

limits of stebility of laminar boundary-layer flow., The fact that
the "proper" Reynolds number that appears in the boundary-layer
stabillity calculations 18 based on the kinematic viscosity at the
inner critical -layer (where the viscous forces are important)
rather than In the fres stresm also enters the problem, dbut it
amounts only to a numerical and not a qualitative change when the
usual Reynolds number based on free-stream kinematic viscosity is
finally computed. Whether the. value of Recrmi for a glven

: n

k3
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laminar boundary-layer flow ls larger or smaller than the valus
—of Recr " for the Blasius flow, for exasmmple, iz determined
? min .

entirely by the distribution of pg'--; across the bowndary leyer.

If the quantity % \pg 15 negative and large neer the solld

gurface =80 thet the quantity (L - 2A)v(c) reaches the valus 0.580
when the value of ¢ = ¢, 18 less than 0.4186, the flow is rela-

‘ a aw
tively more stable than the Blasius flow., If tho guantity 5.} (pd-y-)

is positive neaxr the solid surface, so thet (1 - 2A)v(e) = 0,580

when w(or ¢} > 0,4186, +the flow is relatively less stable than

the Blesius flow. Thus, the questlion of the relative influence

on Recr of the klnematic viscoslty at the immer ‘critical layer
min

and the distribubion of pg"-;r acrose the bowndary layer, waich

remained open in the concluding discussions of reference 8, is now
settled, '

The physilcal basis for the prodominant influence on Recr

t ’ d- )
.of the distribution of p% across tho boundary layer is to be

found in a study of the energy balance for & subsonlc boundary-layer
disturbance (section 4). The distribution of p:-ff determines the
' AL

maximum possible value of the phase velocity ¢, or the maximum

possible distance of the immer critical layer from the solid surface
for & neutral subsonic disturbance. The greater the distance of,
the inmer critical layer from the solid surfacé,” tho greater
(rolatively) the rate of energy absorbed by the mean flew from tho
disturbance in tho vicinity of the critical layor {oguations(h,21)
and (%.22)). VWhen ¢, is large, thorefore, the enorgy balance’
for a neutral subsonic disturbance is achleved only when the
destabllizing action of viscosity near tho molid surface is rola-

1 3/2

-biv"ely large or, in other words, when = cé is large

and.._"bhe Reynolds number Ry, vwhich is vory noarly oqual to Rcrmin’

is’ correspondingly emall. On the other hand, when o, is small
and the imner critical layer is close to the golid swrface, thoe rate

Lh .
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at which energy is absorbed from the disturbance ‘near the critical
 layer is relatively small and the rate at which energy passes to
the disturbance near the solid surface, which is of the order

of ——--}——, is glso relatively smell for 'energ_;y 'balanée; conse-

Cl we——
UC

guently Rgn min is large.

6. PHYSICAL SIGNIFICANCE OF RESULTS OF STABLLITY ANALYSTS

&, General

From the results ovbai ned. in the present paper end in refer-
ence 8, 1t 1s clear that the stability of the laminar boundary
layer in a compressible fluld is governed by the action of both.
viscous and inertia forces. dJust as in the case of an incompressible
fluid, the stability problem cammot be undersbtood unless the viscosity
- of the fiuid is taken into eccount. Thus, vhether or not a laminar
boundary-layer flow is wmetable in the inviscid compressi‘ble
fluld (R—>o), 'bhat is, vhether or not the product of the density

and the vor’cici'by pd:;r has an extremm for some va‘Lue of w> 1 -i-,
. e
'bhere 1s always some value of the Reynolds number R, 'blelow L.

which the’ effec‘b of viscous dissipation predomlnates and the flow '
is stable. On the other kand, at very large Reyholds numbers the
influence .of viscosity is destabilizing., If the froe-stream
velocity is subsonic, any leminer boundary-layer £low is unetable
at sufficiently high (but finite) Reynolds numbers, whether®or not
the flow is stable in the ‘inviscid fi. uid. wb.en om.;y' the inertis
:E'orces are considered.

The action oi‘ the inertia forces is more decisive :E'or the
Bbability of the laminar boundary layer if the froe-stroan veloci ty
is supsrsonic. Because of the physical requirement-that thé rela-
tive phase velocity (¢ - 1) of the boundary-layer disburbancos

must be su'bsonic, it _o}_lows that ¢ > i --%—; 0 -:and :bhe duan-

d ) . n
tity [E‘Y-' (D%)] can be large onough nemmbively under certain

conditions so that tho sbebilizing action of the inertia Forces

b5
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neax. the inner critical layer {vhere w = ¢> 0) ie not overcoms
by the destabilizing action of viscosity near the solid surface.
In that case, undemped disturbances cennot exist in the fluid, .and
the flow ls stable at all values of the Reynolds mumber.

Regardless of the free-stream velocity, the distribution of
a
the product of the denslty and the vorticity pd-;j- acrogs the

boundary layer determines the actual Limit of stebllity, or the
minimm critical Reynolds aumber, for leminar boundary-layer flow
in a viscous conductive gas (equation (1,8)). Since the distri-

bution of pg'-;; acrods the boundsry layer in turn is determined by

the free-stream Mach number and the thermal condltions at the solid
surface, the effect of these physlcal paremeters on the stability
of laminer boundary-leyer flow ig readily evaluated.

b. Effect of Free-Stream Mach Number and Thermal Conditlions at
Solid Surface on Stability of Leminer Boundary Layer

The distribution of mean veloclty end mean temperature (and
therefore of pg ' across the laminar boundary layer in a viscous

conductbive gas 1s strongly influenced by the fact that the viscosity

- of a gas increases with tho btempersture. ( For most gases, u o i
(m = 0,76 for air) over a fairly wide temperature range.] When
heat is transferred to the fluid through the solid surface, the -
temporature and viscosity near the surface both. decrease along the
outward normal, and the fluid near the surface is more retarded by
the viscous shear than the fluld farther out fram the surface - as
compared wilth the ilsothermal Blasius flow. The velocity profile
therefore always possesses a point of inflection (whore W' = 0)
when heat 1s added to the fluid through the solid surface, provided
there is no pressure gradient in the direction of the mein flow.

a aw) W'

Since -~ p-—):-—- - w=—— the ﬁan'tit e d.x vanishes
dsr(dv T T e W G P& °

aw :
and pa-&- has an extremm at some point in the fluid, On the other
hand, if heat is withdrewn from the fluid through the solid sur-

face, % and -gﬁ- aro both positive near the surface and the
¥y

fluid near the surface is less retarded than the Ffluid farther .
TS
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out - as compared with the Blasius flow. The velocit‘y profile is
therefore more convex near the surface than the Blasius profills.

-As pointed out in section 11l of referehce 8, the influence
of the varisble viscosity on the behavior of the produc'b of the

densi 'by and the vortlicity pd—; can be geen divectly from the equa-

tions of motion for the mean flow. When there is no pressure
gradient in the direction of the main flow, the flui d acceleration
vanlehes at the solid swrface, or .

( [ (*au*] 0- | - (6.1}
oy* oy* ) ; .

a:_t;d.

Bau-; 1 I e m ® I
) 200-0E «
SFEA y* ay*lay*l Tl&y*lay*l

Thus, when heat is added to the i‘luid through the solid surface

(‘l‘l' < O) is positive, end the veloci‘by srofile is concave
1 _
" near the surface and possesses a ;polnt of 1rr£'lection for some value
Pz
of w> 0; when heat is wlthdrewvn from the fluwid <Tl' > o), o )
. . . g ot i . \ ue

is negative, and the velocity profile is more convex near the surface
than the Blasius profile

The behavior of the quantity L owF
| ' . T Jyx
3%

parallel to that of g—-—é- From egquation (6. 2) In nondimensional
y—\l. .

form,

k7
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L BEL e e

l . A

Differentiating the dynsmic eguations once and making use of the

a
energy equation gives the following expression for [—-—-; (—-—)]

(appendix D):

2 /. 3. ) 2
[.d.'._.e. l) = o(m + 1L)(y - l)Mo (wl) e 2(m + 1)2 W ! ( L3) (6.4)
GFENT/Y, T

' 2 )
Thus, for zero pressure gradient, [E__ (-Y->] is always positive.

*

. . ' s
Now, if the surface is insulated,the quantity [—g’;(g—) vanlshes,
ae fu a /w w! -
but —-—-(—-— >0 and —- (-—- and = both increase with
ay \T /4 ay \T T .

-t ' '
digtance from the solld surface. Since -;—r- >0 far from the solid

i . . !
. surface, —;I— has a maximum and %; Tl' vanishes for somes value
of w >0, IFf heat is added to the' fluid through the solid sur-
face (T g 0) -—(—-—) 18 already positive at the surface, and

2
a

gince E—-—- —-—)] >0, ‘the quantity Ey—(%’-) vanishes at a point
dy2 .y L .

in the fluid which is farther from the surface than for an insulated
boundary at the same Mach number (figs. 3(a) and (b)). Conme-
guently, the value of ¢ = Cy for which the function .
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'c P2 g fu
(1 - 2A)v(e) = - w(l - ) ~ee |reme = (--) reaches the
Ty w')3 dy \T o
value 0.580 is larger than the value for ‘the insulabed surface.

By equationt (5.8),. the effect of adding heat to the fluid through

the solid swrface is to reduce Rg orpy end to destablilizZe the
n

flow, as compared with the flow over an insulated surface at the
same Mach number (fig. 6).

If heat is’ ﬁthdram from the fiuld through the solid surface,
?
T,'>'0 and [%y— (%"-)] 18 negative, In fact, if the rate of heat
e 1
t

. . I w *
trangfer is sufficiently large, the quantity %;(F) doeg not

venish within the boumdary layer (fig. 3(b)). The value of ¢ = ¢,

for which the function (1 - @A)v(e) reaches the value 0.580 is
emaller than for an insulated surface at the same Mach number, =snd
by equation (5.8), the effect of withdrawing heat from the fluid
through the sclid swrface is to increase :Rec]_1 and to steblilize

the flow, as compared with the flow over an insulated surface at
the same Mach number (fig. 6). When the velocity of the free stream -
at the "edge" of the boundary layer 1s supersonic, the laminar
boundary leyer-is campletely staebilized if the rate at whilch heat

is withdrawn through the solid surface reaches or exceeds a critical
value that depends only on the Mach mumber, the Reynolds number,

and. the properties of the gas. The ceritical rate of heat transfer:

1 .
is that for which the quantity %(-ff"-.) 18 sufficiently large

negatively near the surface (see equation (6.3)) so that

(1 - 22)v(c) = 0.580 +whon ¢ = Cy =1 - Illi_ (sections 4 and 5).
5 .

Although detailed stabillity calculations for supersonic flow over
a noninsulated surface have not been carried out, the funchion
(1 - 2&)v(c) has been computed for noninsulated surfaces at
Mgy= 1.3, 1.50, 2,00, 3,00, and 5.00 by a rapid approximate method
(appendix C)., The corresponding estimated values of Ro.. were

. ] min
calculated from equation (5.8), and in figure 7 these walues are
plotted against Ty, the ratlo of surface temperature (deg abs.)

to free-stream temperature (deg abs.). Ab any glven Mach number
kg
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greater than unity the value of Rg Poin increases rapldly

1.
as co-——)l - Tlli—; when , differs only elightly fram 1 - TR
(o] (o}
the stabllity of the leminar boundary layer ls oxtremely sensitive
to thermal conditions at the solid surface. At each valuve of Mo >1,

there is a critical value of the temporsture ratlo Tlcr for

vhich Rg —o, If T; £T; , the laminar boundary layer is
Crmin = “eoxr
stable at all Reynolds mumbors. The differonce betwoen the -
gtagnation-tomperatire ratioc and the critical-swrface~temporatvre
ratio, which i1s related to the heat-transfer coefficlent, is plotted
againet Mach number in figure 8., Under froc-flight conditions, for
Mach numbers greater than scme critical Mach number that dopends
largely on the altitude, the velue of Tg - Tlcr is within the

order of magnitufle of the differencoe between stagnation temperature
and swrface temperature that actually existe bocauso of heat radia-
tion from the surface (references 14 and 15). In other words, the
critical rate of heat wilthdrawal from the fluid for laminar ata-
bility is within the order of magnitude of the calculated rate of
hoat conduction thrcugh the solid surface which balances the hoat
radiated from the surface under squilibrium conditions. Tho calcula-
tions in eppendix E ghow that this critical Mach number is approxi-~-
wately 3 at 50,000 feet eltitude and approximately 2 at

100,000 feet altitude. Thus, for M, >3 (approx.) at 50,000 feet
altitude and M, > 2 (approx.) at 100,000 feet altitude, the

laminer boundary-layer flow for thermal equilidbrium is completely -
s'ﬁ;‘bla.in the absence of en adverse pressure gradient in the freo’
girean, - - . ) : .- . P :

When there is actually no heat conduction through the solid
surface, the limit of stability of the laminer boundary layer
depends only on “the free-stream Mach nuwber, that is, on the extent

of the "aer'od.ynamic he " o OV
. ating” {of theo order of wy * S—-—- near
\ ov*

the golid éurface._ A good indlcation of the influsnce of the free-
stream Mach number on the distribution of p:—-—; acrose the boundary

layer for an insulated surface is obtained from & rough estimato

of the location of tho poilnt at vhich g’—; pg'--; roaches a positive .

d.e' dw
maximm (or ———- pd-; vanishes). Differcntiating the dynamte

ay”

50
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equations of mean motion twice and making use of the energy and
conbinuity equetions yields the following resulit for an insulated

surface:
a3 fwt b2 (Wl'.)e |
dy3 T L 2 Tlml-
vhers b = & From equations (6.&). and (6.5) the value

V¥ 2* _ _ |
ac Sw a4 fw

of ¢ at which —~—f-—-) vanishes, or —{-——] reaches a maximm,
a2\ S AyN\T /-

iz given roughly for alr by -

Wt[dg' w)] | R
L — 2 2
Sty N ", ..

- & =1 . ‘ (6.6)
R
& \T /], B |

~

b{0.3320)

= (appendix B).’ In other words, ths point
1

in which wl' =

1 : .
in the fluid at which -g'-y—(%—-) attaine a maximm moves farther out

from the surface as the Mach number is increased - at least in the
range O S M, S 4.5 (approx.); therefore the value of ¢ for

; )
which —:’-}-( %—) vanishes and the valus of ¢ = Cq for which

(1 - 2A)v(e) reaches the value 0.580 . both increase with the Mach
number (fig. 3(a)). By equation (5.8), the value of Recrmi for
n

the laminer boundary-layer flow over an insulated surface décroases
as the Mach number increases and the flow is Gestabillzed, as com-.
pared with the Blasius flow (fig. 5).

51
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- ¢. Results of Detalled Stability Calculations for
Insulated and Noninsulated Surfaces

From the results of the detalled stabllity calculations for
several representative cases {figs. & to 8), a guantitative
estimate can be made of the effect of free-stream Mach number
and thermal conditions at the solid surface on the stabllity of
laminer boundary-layer flow. For the insulated swurface, the value
of Recr is 92 when Mo = 1,30 as compared with a value

min
of 150 for the Blasius flow. For the noninsulated suwrface

= 1 3 ) Ty = 1.2 (heat

at M, = 0.70, the value of Ry .. .- is 63 when Ty 5 (

added to fluid), Rg = 126 when Ty = 1.10 (inswlated sur-
crmin

face), and 'Recrm = 5150 when T, = 0.70 (heat withdrawn from
Xfe]

fluid), Since Roy = 2.251292, - (the value of 6

is proportional to the skin-friction coefficlont, differs only
‘glightly from the Blasius valus oi 0,6667) the effect of the thermal
conditiong at the solid swrlace on Rx* is oven nore pronounced.

The valus of Ry 18 60 x 10° when T; = 0.70 and M, = 0.70,

8 compared with a value of 51 X 103" for the Blebius flow
6 Ty =1 and M, = O). For the insulated surface the value

of Rx*cr declines from the Blasius value for M, =0 to a
min
value of 19 x 103 at M, = 1.30. The extroms sensitivity of the

l:!mi:b of stability of the laminar bound'ar; layer to thermal condi-
tions at the solid swrface vhon Ty <1 i1s accounted for by the

Tact that c, is small vhon Ty <1 and M, < 1 (or M, is not
' 1 .
much groator than unity) and Recrmin' s:—E (equat?.on (5.?)).
o .

Small changes in c¢,, therefore, produce large changos in Rg orgn’

. : , n
In addition, vhen T3 < 1, small changes in tho thermal conditlons

. +1
at the solid surface produce appreciable changes in —% (%—) (equa-~
tion (6.3)) and, theroforé, in the value of Cor
Not only is tho value of Rp orpy aPfoctod by the thormal
n

condltions at theo solid surface and by the free-stream Mach number
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but the entire curve of ag agalnst Ry for the neutral dis- )

turbances 18 also affected. (See Tigs. 4(k) and 4(1).) When the
surface is insulated. (end M, # 0), or heat 1s added to the fluid ‘

(Tl = 1.25), gg—>¢g # O as Rg—> o along the upper branch of

the curve of neutral stability. In other words, there is a finite
range of unstable wave lengthse oven In the limiting case of an
infinite Reynolds number (inviseid fluid). EHowever, a-—>0

as Rg—> o for the Blasius flow, or when heat is withdrawn from

the fluld,  This behevior is in complete agreement with the results
obtained .in section 4 and in reference 8.

A comparison between the curves of dg against Rg for
Ty =1.25 and T; = 0.70 at M, = 0.70 shows'that withdrawing

heat from the fluid not only stabilizes the flow by increasing Rg o
; / : n

but also greatly roduces the rar'zé_;e of unstatle wave numbers (ag)

On the other hand, ‘the addition of heat to the fluid through the
solid surface greatly increases the range of unstable wave numbers,

It should also bo noted that for given values of o, o,
and Ry the time frequencies of the boundary-layer dlsturbances

in the high-speed flow of a gas are considerably greater than the
frequencles of the familiar Tollmien waves observed in low-speed
flow. The actuel time freguency n¥* expressod nondimensionslly
is as follows: ' '

n¥ .'(_J;T" cag
(E;?)E ) 2Ry

For glven valuos of ¢, Og , and Rg the frequency increases as
the square of the froe-stream velocity.

d. Instability of Laminar Boundary Layer and
Transition to Turbulent Flow

Tho valuo of Rgo, obtained from bthe stability analysis
n . .

for a given lamipar boundary-lsyer flow is tho valuo of the Reynolds
number at which solf-exclted disturbances flist appear in the
boundary layer. As Prandtl' (reforence 12) carefully pointed out,
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these initlal distwrbances are not turbulence, in any sense, dbub
slowly growing oscilletions, The value of the Reynolds number at
vhich boundary-layer dilsturbances propagated along the surface will
be amplified to a sufficlent extent to cause turbulence must be
larger than Rg CTadn in any case; for the insuwlated flat-plate

flow at low speeds and with no pressure é:a.dient, the transition
Reynolds number Rg t 18 found to be three to. seven times as

large as the valus of Rg Tgn (references 6 and 7). The vé,lue
) : 1
of Rg £ depends not only on Rg,,, but also on the initia

magnitude of the disturbances with the most "dangerous" frequencies
(those with greatest amplification), on the rate of amplification
of these disturbances, and on the physical procese (as yet wnknown)
by vhich the quesi-stationary leminar flow la finslly destroyed

by the amplified osclllations. (BSee, for oxample, references 16
and 17.) The results of the stability snalysis novertheless pormit
certaln general statements to be made concerning the effect of
freo~stream Mach nuuber and thermal conditions abt the solid surface
on transition. The basis for these statemonts is sumarized as
follows: '

(1) In many problems of technical interest in aeronautics the
level of freeo-stream turbulence (magnitude of initial disturbances)
is sufficiently low so that the origin of transition is always to
be found in the instablility of the laminar boundary layor, In
other worde, the value of Recz‘min 1s an absolubte lower limit for

trangition,

(2) The effect of the free-stresm Mach mummbor and tho thermal
condltions at the solid surface on the stability limit (Recrmi )
n

:Es overvhelming. For example, for M, = 0.70, the value of Rec
vhen T3 = 0,70 (hoat withdrawn from fluld) is more then 80 times
as groat as the valuo of Ry, whon Ty = 1,25 (heat added to
fluid).

(3) The maximum rate of emplification of the self-oxcitoed
boundary-layer dlsturbances propagated along tho swrface varios _
roughly ag 1’ o) Tmin’ - (This approximation agrees closely with

the numerical results obtalned by Pretsch (reoftronco 18) for tho
cago of ‘an lncompressible fluid.) The.effect of withdrawing heat
from the fluid, for oxample, is not only to incroaso Rg c and
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stabllize the flow in that manmer but also to decrease the Initial
rate of amplification of the unstable disturbances. In other words,
for a given level of free-piream turbulence, the interval _
between the first appearance of self-excited disturbances

and the onget of transition is ex_pected to be much longer for a
relatively stable flow, for which Rac is large, then for a

relatively wnstable flow, for which Rg cr;nin _' 15 small and the
initial rate of amplification is large.

On the baeis of these observations, trensition is delayed (Rg -

increased) by withdrswing heat from the fluid through the solid
surface and is advanced by adding heat to the fluid through the
so0lid surface, as ccmpared with the insulated swface at the same
Mach number, For the insuleted surface, transition occurs sarlier
as the Mach numbor is increesed, as compared with the flat-plate
flow at very low Mach numbeors., When the free-streem weloclty at
the edge of the ‘bound.s.ry layer is supersonic, transition never -
occurs if the xrate of heat wlthdrawal from the fluid through the
golid suwrface reaches or oxcoeds a critical value that dopends
only. on the Mach mumber (section 6b and figs. 7 and 8).

A comparison botwoen thse results of the present snalysls and
measurements of transition is possible only whon the frec-stream
bressure gradient is zoro or 1s hold fixed whilo the Frec-stroam .
Mach muumbor or the thormal conditions at tho solid surface are
varicd. Liepmenn and:Filas (reforonce 19} have measured the move
ment of the transition point on a flat platuv at a very low free-
stream veloclty when heet 1ls applisd o the surface. Thoy found
by moans of the hot-wire ansmomeboer -bhat Ry X, doclined

from 5 X J.O5 for the insulgted sm-fr.zce 'bo_a. valuo of approxi-
matsly 2 X 10°. for T; = 1,36 when tho lovol of free-stream

(w*1)= ' o .
- was 0.17 percent, or to a value of 3 X 102

(5)°

when T ke = 0.05 percent and Ty = 1,40, Tho valizc of Rgi_br

turbulence

declinos from 470 (approx.) to 300 (approx ) in the first case and
to 365 in tho second,

Frick and M\.Cullm,_gh (reference 20) observed the veristion in
the transition Reynolds number when heabt 1s applied to the upper
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surface of an NACA 65,2-016 airfoll at the nose section alone, at

the sectlon Just shead of the minimm pressure station, and for

the entire leminar run., When heat ls applied only to the nose

section, the transitlion Reynolds number (determined by total-pressure-

tube measurements) was practically vnchanged. Near the nose,

Rg << Ry . end the strong favorable pressure gradient in the
Crmin - :

region of the stagnation point stebilizes the laminar boundary layer

to such an extent that the 'addition of heat to the fluid has anly

a negliglible effect. When heat 1ls applied,however,to the section

Just ghead of the minimum pressure polnt, whers the pressure

gradients are moderate, the transition Reynolds number Rg tr

declined to a value of 1190 for T ~ 1,1k, - compared with a value

of 1600 for the insulated surface. When heat 1s applied to the
entire leminar run, Ry i declined to a value of 1070 for T, = 1.1k,

- It would be interesting to Investigate experimentally the
stabllizing effect of a- withdrawal of hea’t from the fluid at super-
sonlic velocities. AL any rate, on the basis of the resulits obtailned
in the experimental investigations of the effoct of heating on.
transition at low spoods, the results of the stability analysis
glve the proper direction of this effect.

T. Stability of 'bhé Laminar Bouzidary-Layer Flow'of '.a Gas with -a :
Pressure Gradlent in the Direction of the Free Stream

- Tor the case of an incompressible fluld, Pretach {reference 9)
has shown thet even with a pressure gradient in the direction of
the freo stroem, tho local mesmn-velocity distribution across the
boundary layor completely deotermines the stabilify characteristics
of the local laminar boundary-leyer flow at large Reynolds numbers.
From physical considerations this statement should apply also to
the compressible fluld, provided only the stability of the flow -
in the boundary layor is consideored and not the possible inter-
action of the boundery layer and the main "extermal flow. Furthor
study is required to settlo this question.

If only the local mean velocity-bemperature distribution across
the boundery layer 1s found to be significant for laminap atadlility
in a campressible fluld, the criterions cbtainod in the prosent -
peper and in roference B are theh immediatoly applicable 4o laminar
boundary-layer gas flows in which there is a froe-stream proegsure
gradiont. The quantitative offect of a pressuro gradicnt on laminar
stabllity could bo readily determined by means of the approximate
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estimate of Rg . (equation (5.7)), in terms of the distribution

of the quantity pc%'r across the boundary lsyer. Such calculations

(wnpublished) have alreoady been cerried out by Dr. C, C. ILin of

Brown University for the incompressible fluid by means of the

approximate estimate of Rgy - given in reference 5, part III.
Crmin

In any event, the qualitative effect of a free-phtream pressure
gradient on the local dlstribution of pi—-;-_r across the towndary

layer 1s evidently the same in a compressible fiuwild as in an incom-
Pressible fluid. If the effect of the local pressure gradient alone
is considered, the velocity distribution across the boundary layer
is "fuller" or more convex for accelerated than for wniform flow,
and conversely, less convex for decelerated flow. Thus, from the
results of the present paper the effect of a negative pressure
gradient on the laminar boundary-layer flow of gas le stabilizing,
go far as the local mosn velocity-temperature distribution is con-
corned, while a positlve pressure gradient is destabilizing.  For
the incompressible fluid, this fact is woll osbablishced by the
Raylelgh-Tollmlen criterion {reference 3), the work of Helsenberg
(roference 1) and Lin (reference 5), and a mass of detailed cal-
culations of etability limits from the curves of o against R
for the neutral disturbances. These calculations were recently
carried out by several German investigators for a comprehensive
serles of pressure gradient profiles, (Seo, for examplé, refer-
onces 9 and 21.)

Scme idea of the rolative influence on leminar stabllity of
the thermal conditions at tha solld swrface and the froo-stresm
Pressurc gradient is obtained from the equations of mean motion.
At the surface, . - ' : :

N i W N - S
B (‘a@l“[s;@ %L?‘u&” =N

or

d dw m+l-.; 1 58 dug¥
sleg) == mw - (1.2)
dy \ dy 2 171 mtl =

1 T 7 ~
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g2 dugt
In a region of small or moderate pressure gradients| |— _ﬁ_ 2,
Vo* dx

say) the dietribution of pg is sensitive to the thermal conditions

at the solid surface. TFor exsmple, the chordwlse position of the
point of instability of the laminar bouhdary layer on en alirfoll
wilth a flat pressure distribublon ls expecsted to be strongly influ-
enced by heat conduction through the surface. (See reference 20.)
For the insulated surface, the eguations of mean mobtion yleld the
following relation (appendix D) , which does not involve the preasure
gradient explicitly: ' :

3

162 /ay ' 1)

il @_.‘i = glm+ 1) (7 - 1)M02-(--—-— >0 (7.3)
ay® \ &y 5 Tj_]:2

The effect of "aerodymamic heating" at the surface opposes the
- effect of a favoreble pressure gradient so far as the dilstribubion

of pgf across the boundery layer 1s concerned ( equattons (7.2)

¥y
and, (7.3)).. The relative quantitative influsnce of these two effects
on laminar stability can only be settled by actual calculations of
the laminar boundary-layer flow in a compressible fluid with a free-
stream pressure gradlent. A method for the calculation of such -
flows over an insulated surface is given in reference 22,

. When the local free-stream velocity at the edge of the boundary
layer is supersonic, a nogative pressure gradient can have a declsive
effect on laminar stability. The local laminar boundery-layexr flow
over an Insulated surface, for example, is expacted to be completely
stable when the magnitude of the local negative pressure gradient
reaches or exceeds a critical value that deponds only on the local
Mach number and the properties of the ges. The critical magnitude

of the pressure gradient is that which makes the quantity :_3; pg'}v-

sufficlently large negatively near the surface go that

' 2 N
S O PR L KA | P
L‘l (w')3dy ; w=C

1
When ¢ = 1 o —,

M
o
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Tt has already been shown in the present paper that vhen M, >3

(approx.) the laminar boundary-layer flow with a uniform free-stream
velocity is completely stable under free-flight conditions when the
gsolid surface is in thermal equilibriwm, that is, when the heat
conducted from the fluld to the surface balances the heat radiated
from the surface (section 6b). The laminer boundery-layer flow

for thermal equilibriim should be completely stable for M, > Mg,

pay, where Mg< 3 1f there.is a negative pressure gradlent in

the direction of the free stresm. Favorable pressure gradlents
exist over the forward part of sherp-nosed airfoils and bodies of
revolutlon moving at supersonic veloclties, and the limits of sta-
bility (Recr ) of the laminer boundary layer should be cal-

culated in such cases.
CONCLUSIONS

From a study of the stability of the laminar boundery layer
in a comproessible fluid, the following concluslons were reached:

1. In the compressible fluid as in the incompressible fluid,
the influence of viscosity on the laminar boundaery-layer flow of
a gag 1s destabilizing at very large Reynolds numbers. ITf the
free-stream velocity is subsonic, any lamirar boundary-layer flow
of gas is wunstable at sufficlently high Reynolds nubors.

2, Regardless of the free-stream Mach number, if bthe product of

the mean density and the mean vorticity has an extremum % p%

venighes | for some value of w> 1 - -j-/}- {(vhero w 1s the rabio of

moan velocity component parallel to theosurface to the free-stream
velocity, and where M, is the free-stream Mach mumber) the flow

is mmsteble at sufficlently high Reynolds numbers.

3. The actual limit of stabllity of laminar boundary-layer flow,
or the minimum critical Reynolds number Recr s 18 determined
min
largely by the distribution of the product of the mean density and
the mean vorticlty across the boundary layer. An -approximate
estimate of P'ecr . 18 obtained that serves as a criterion for
. min
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the influence of free-stream Mach nvmber and thermal conditions at
the solid swrface on laminar etebility. TFor zeroc pressure gradient,
this estimate reads as follows: .

6 e

T
! ot \ll = MB(L - op)?

®min

'whex;e T 1is the ratio of temperature at a point within the boundary
leyer to free-stream temperature, Ty 1is the ratio of temperatuwre

at the so0lid surface to the free~stream velocity, and c, is the

valus of ¢ (the ratio of phase velocity of disturbance to the free-
gtream velocity) for which (1.- 2A)v = 0.580. The functions v(c)
and. Mc) are defined as follows:

- /o . _
- ﬂ s and
Qan>l°f 3 (1 N

v(c) = SN g
Tl [(aw>3 on \T 3
on
w=C
n@-@l
)\,(O) T er———
c,
vhere
n nondimensional distance from surface

L., On the basis of the stability criterion in conclusion 3 and
a study of the equations of mean motion, the effect of adding heat
to the fluld through the solid surface is to reduce Re'cr and to
o min
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destabilize the flow, as compared with the flow over an insulated
surface at the -same Mack number. Withdrawing heat through the
solid surface has exactly the opposite effect. The value of Rec v
Tor the laminar boundary-layer flow over an insulated surface decreases
ag the Mach number increases, and the flow is destabllized, as com-
pared with the Blaslius flow at low speeds.

5. ¥When the free-stream velocity is supersonic, the laminsr
boundary layer is completely stabilized if the rate at which heat
ig witndrawn from the fluid through the solid surface reaches or
exceeds a certain critical value. The critlcal rate of heat transfer,

: ' a dw
for which Ry crmin-—-)oo s 18 that -which makes the. quéntity % <pd-;
sufficiently large negatively near the surface so thab )

[:l - 27\.'(c_)j v(é) = 0.580 when . ¢ = co-= 1 -.-S-]&-. Calculations for
. _ - M

several supersonic Mach numbers between 1,30 and 5.00 show that
for Mo >3 (appr_ox.) The critical rate of heat withdrawal for

laminer stebility ie within the order of magnitude of the calculated
rate of heat conduction through the solid swface that balances the - .
heat radlated from the surface under free-flight conditions.

Thus, for M, >3 (approx,) the laminar boundary-layer flow

for thermal equilibrium is completely stable at all Reynolds numbers
in the absence of a positive (adverse) pressure gradient in the
direction of tho free siream.

6. Detailed calculations of the curves of wave mumber (inverse
wave lengbth) against Reynolds mumber for the neubral boundary-layer
disturbances for 10 representative cases of insulated and non-
insulated surfaces show that also at subsonlc speeds the guantitative
effoct on stability of the thermal condltions at the solid surface
is very large, For example, at & Mach number of 0,70, the value
of Rg is 63 whon T, = 1.25 (heat added o fluid), Rg.. =126

CTypin 1 CPpin
vhen T, = 1.10 (insulated surface), and Rgcrmin = 5150 .When Ty =0.70

{(hoat. withdrawn from fluwid). Since Rx* x 2.25R92_, the effect
on RI,e is even greater. . '
Crmin

7. The results of the analysis of thp'stability of leminer i
boundary-layer flow by the linoarized method of small perturbations
must be applied with cars to predictions of transition, which isg a
ponlinear phenomenon of & different order, Withdrawing heat from the
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fluid through the solid surface, however, not only increases Recrmin

but decreases the initial rate of amplification of the self-exclted

disturbances, whick is roughly propartional to 1 orys 3 addition
n

of heat to the fluld through the solid surface has the opposlte
effect, Thus, it can be concluded that (a) transition is delayed
(Rg o increased.) by withdrawing heat from the fluid and advanced by

adding heat to the fluid through the solld swrface, as compared with
the insulated surface at the same Mach mumber, {b) for the insulated
surface, transition occurs earlier as the Mach mmber is increased,
(c) when the free stream velocity is eupersonic, transition never
occurs iFf the rate of heat withdrewasl from the fluid through the
solld surface reaches or exceeds the critical valus for which
Ry . s (See conclusion 5.) '

min

Unlike laminar instability, transition to turbulent flow in
the boundary layer is not a purely local phenomenon but depends on
the previous history of the flow. The quantitative effect of thermal
conditions &t the solid surface on transition depends on the existing
preseure gradient in the direction of the free stream, on the part
of the solid swrPace to which heat is applied, and so forth, as
well as on the 1nitial magnitudo of the disturbunces (level of free-
stream turbulence). . '

A comperison between conclusion 7(a), based on the rosults of
the stability enalysis, and experimental investigations of the
effect of surface heating on transition at low speeds shows that
the results of the present paper glve the proper direction of this
effect. :

'8, The resulte of tho presont study of laminer stadllity can
be extended to Include laminar boundary-layer flows of a gas in
vhich there is a pressure gradient in the dlrection of the freo -
stream. Although further study is requirod, it is presumed that
only the local mean velocity-temperatuve disbtribution determines
the stability of the local boundary-layer flow., If that should
bo the case, the effect of a pressure gradient on laminar stabllity
covld be easily calculated through its effect on the local dlstri-
bution of the product of mean density and mean vortieity across '
the boundary layer. : - '

When the fres-stream velocity at the "edge" of the boundery
layor is supersonic, by analogy with the stabilizing effect of a
withdrawal of heat from the fluid, 1t is expected that the laminar
boundary-layer flow is campletely stable at all Reynolds numbers
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when the negative (favorable) pressure gradlent reaches or exceeds
a certain critical value thet depends only on the Mach number and
the proporties of the gas. The leminer boundary-layer flow over a
surface in thermal equilibrimm should be completely stable for

Mo_ >Ms’ say, where Mgz < 3 if there is a negative pressure

gradient in the direction of the free streamn,

Langley Memorial Aeronautical Lsboratory
Nationel Advisory Committee for Aeronautics
Langley Field, Va., September 5, 1946
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APPENDIX A
CALCULATION OF TNTEGRATLS APPEARING IV THE INVISCID SOLUTIONS

Tn order to calculate the limits of stability of the laminar
boundary layer from relations (2.21) to (2.29) between the values
of phase velocity, wawve number, and Reynolds number, 1t is first
necessary to calculate the values of the integrals Kl, El, Ho,

Ny, M3 s N3 , and so forth, which eppear in tho expressions for
the inviscid solutions @ (y) end o@y(y) and thelr derivatives

at the edge of the boundary layer. Thege integrals are as follows
(equations (2.13), (2.9), and (2.10)):

e (w - c)?
W - C
Hl(C) = ........'f—_..—.dy
uly
RN Moe(w - ¢c)@
K, (e} = ' 5
v, (w - o)
Vo o
N (c) = KqH - T - M - 0)® y(v-c)e
ole) = KiHy - K5 = ( 3 N ay = Hy(c)
W - 0C
Iy Ny
Wo

Jo

i dy (v~ c)2 T

M3(C) = H'EEI" H3 =J
J1
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Ni(e) = KyHp - Kg

7 3
2 -MOE(W-— c)2 T (w-c)? 2mp -MOE(W- c)?
= = d,}r T P ay
-Jyl (w- C) yl :I' (W-r c)
gnd so forth.

Terms of higher order then a5 in the scries expressions
for ¢y &and @, are neglected. Wien « < 1, the error involved
n

o
1s small because the terms in the series decline llke vk Tven

for a > 1, however, this approxrimation is Justifled, at least for
the values of ¢ +that appear in the stabllity cslowlations for
the 10 representative cases seolected in tho present papor. For
example, the leading term in R.P. Npy.,(c), vhere Xk =2,3.. .,

i 3 k-1

‘18 spproximately -% [aﬁf—-s:! miltiplied by the leading term
! - c

in R.P. 1\T3(c). The quantity in the brackets 1s at most 0.12 in

the present calculations; for example, R.P. 1\15(c) = 0.06 R.P. .13?3(0).

Moreover, R.P. Nek(c) = (1 -~ ¢) R,P. N2k+l(c)‘ Similar spproximste

relations exlst between R.P. Mp(c) and R.P. I-%(c); and, in
3 . :
- c
addition, R.P. Ms(c) =z (1 - ¢c) -G——R_.P. N3(c) = 0.015 R.P. N3(c)_.
at most.

The only inbtegral for which the imaginary pert is calculated
is Kl( c). At the end of this appendix, it is shown that the conw

tribubtions of the imaginary parts of Hy, M3, and. I\T3 ara
negligible in comparison with the contribution of I.P. K;(c).

Goneral Plan of Calculation

The method of calculation adopted must take lntc accowmbt the

fact that the value of %5_ (p%) at the point ¥ = For vhore W= c,
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strongly influences the stability of the laminar boundary layer,
Accordingly, the integrals are broken into two parts; for example,

73 ’ ' 1Yo '
T oy | T a7 - u 2
y, (-0 Jyy (¥ -0

I

K, (¢)

Kyq(c) + Epple) - M2

dy

is calculated very accurately, wheresas- Klg(c) is calculated by a
more approximate method as follows:

a
where ¥y > y,- The integral K;1(c), which involves (.&}. pq{‘iﬂ
=

Jo
T
X = LA (1)
12(6) T3 .(w - 0)® v

This integral is evaluated as a power.ssesriesa iIn c¢. The
velocity profile w(y) is approximated by a parabolic arc plus a
straight-line segment for purposes of integration. In the more
complex Integrals Hy, M3, and N3, the indefinlite Inte-

K4 T ik T '
grals dy and —5 dy are evaluated by 21 .
v, (v - c)e (w-~c)
J : 7

or 41 point numericael integration by means of Simmpson's rule. The
values of w(y) are read from the velocity profiles of figures 1
and 2, The value of yy -y =a is 0.40 in the present series of

calculations; this value 1s chosen so that the polnt y = yJ is
- never too cloge to the singularity at y = V- Take

"‘YJ . . :
£,(e) = | —E gy (2)
+ Jry (w-c)® '

66

“

C



NACA TN No. 1360

Ny
T -

The integral Kll(c), or the indefinite integral —(a--—--s-: oy
W~ e
okl

that sppears in Hy, M3, and, 1\73 , 1is evaluated by expanding the

integrand in a Taylor's series in y - Yo snd then intezrating the

series term by term. The path of integration must be taken below
the point y = y, in the camplex ¥-plene.

Tnstead of calculating the valuss of the velocity and btempera-
ture derivatives wc(r'l) and Tc(n> directly, it is simpler to relate

these derivatives to their values at the surfaco by Teylor's:series
of the form

: o (2+2)
AR P Wl(n*“l) (o - 7)) + ~—-——-——123 (v - 3’1)2 ..

The derivatives at the surface ‘W’l(n) and ,_.L,l(n) ere calculated
from the equations of mean motion (eppendix B).

The integral XK,,(c), for exsmple, is finally obtained as a

pover series In y, - ¥; = 0 and in .y.j - ¥, =8 -0, plus terms

involving log ¢. The phage veloclty c¢ is reia'bed to o Ly

&, _ & .
Cc o= w ! 0‘+i2-0’d+-~:-3—__63+"'
1 2 3!

where

(k)

'W’l ‘ ) _'

he= —+

1

Terms up to the order of a” are retained in order ‘o include all

terms involving W vii
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Detailed Calculations

In order to illustrate the method, tho evalusbion of Kl(c)
is given in some detail,as followss

(1) BEvaluation eof Xy (c):

7
Kl(c) = —. 2 - }IO
7y (v - ¢c)
(a} Define
Is
Kll(c) = .‘.._.._T._....... dy
Uy (w ---c:,)_2
Now
T T
2 PR
(w- )= (v (r - .fc)“dze
where

w " o w 1t

Wy) =1 "'E%;T CEEAE: ;wc, (v - yc)e Youe .

The Twnction -—T-é- isg developed in a Taylor's sories arouwnd tho

volnt " w= ¢ as follows:

>y_y <4’2 (}’ - yc) + _....> (Y - S’c o
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where
Yo =1
Y‘,,0"
¢ oyt
C
(%) ) wc(k""l)
© ( + 1w !
Then
! r °afy-vo) 0y - y)g
D)= S | 2(:9()( )<2> )
(c :3’1-3" (y yC V
and

S % RN Ti-FN Ll /T\"
ORI | S R L2V (=) (7, -
ut (v")? [y'- FJ <‘V 2>c lnCl "yc>+2 <‘3’; (FJ yl)
vy °
l T 1
JMlEClTE) (G5 - 70 = (7 - 7o) +
C

1 p \(lo+l) _ X K

wEE) -(&-&)]*---}
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where
~ix
Yy =T, = |y1 - Yol
Yy == (7 ‘-71')'(3’3'?”1)"'&"’
G =V, - Yl
2 \(K)
The coefficlents <—é are expressed In terms of derivatives
14
of T and w at ¥y = yl as followe:
Define
k
1 1 TV
£2.¥) = - _<-f- . k22
(k - 1) k! (w)2\¥2
T
£(y) = - 5
(w')
U Mk . S N
-t ()2 \W2 (w3 ay \r
Then

k
g 3 = 1 ....T...
k( 0) (wc,)e(k - 1)kt (1!;2) yc
(7))

= fk(yl) i flf'fyl) (yc TTY Y (yc ) yl)z R

TO
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¢ 7.! '?.-“

(The methdd ad.opted. ‘for 'bhe “baiculation of £ (=) (yl) from the

velocity end temperaturs derivatives Wy () and T (3) is given

at the end of this appendix.)

From the expression for Kll( c),

I.P. Kll(c) - :[:P.- K]_(c) .,. : : e
- 1(3') , ,
= { (yl) + ofy (yl\ e e +—;-fl(1)]
and
T, o, 5
R.P. Kj4(c) + TTE T G T ATt 0T et o
| I.P.‘Kll(c) : - 1
+ "ln<a°,o’>+a-g[£0(yl)
o 7o ()
+afo’<yl)+-. o v k- oy —e k. e
é
720 |
vhere
=% "N
£ (k+l)(y)
TS TETD T T M fo(72) 0L%¥L5 (55.= 0)

8, = af'a(yl) + aEfB(yl * a3fh( yl) * auf5(yl> + a5f6(yl> ..

T
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8 = ai‘a'(yl) + 5%3'(;;1) + 'a3fh:'(yl) + ahf,i'(yl) ..

- [Eaf3(yl) + 3a2fh(yl). + ha.3f5<yl) + 5ah'f6(yl') . ]

8 =-:- [éfa"(yl) + aefa"(yl) + a.3f,+"(yl) + -. .. ..]
- [Eafs’(yl) + 38"21‘1:,'('71) + ha3f5'(yl_) + .. .]

+ [3af)+(yl) + 6325'5(;«1) + lOa3f6(yl> .. ]

s, - .2. [afa'_"(yl) va2e () J -2 [Eaf3"(yl) 3628, (7,) + ]
+ [3&1‘4'@1)4- 6a2§'5'.(y1) + . ] - [ hafs(yl) + 10a2f6(y1) + ]

1

5, = % [afeiv(yl)... ]-—% [Qafé“'(‘yl)"' ]+%‘- [3afh"(yl)+ ]
- [’-tafs'(yl) + ] + [5af6(yl) + _]

A
d 2 - '+ d = l.O
k r—-;l (r + 1)! dk"r ©
()
= = 0.40
M -

T2
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(b) Define

¥
2 T

(v - c)®

KILE( e} =
Uy 3

11,0,

i

Jo.so (v - C)e

d(y yl) |

[z2d

k
= :>: ak(k-x-l)c

. k=0

where

1.0
a, = imdj-&l)

k .
: 0.40 W2

The veloclty profile w(y) ie approximated by & parabolic arc
in the inbterval 0.40 < L£y-7n < y3 - Ty and by a straight line

= - + - - '
(‘w = Constant = w(y3)) in the interval ¥y -y Ly-3 g0
The valus of 73 is detexrmined by imposing the conditlion that the

aree under the parabolic-arc straight-line segment sauals the area
under the actual velocity profile w(y) in the interval

0.0y - 7y £ 1.0. The parsbolic arc W= 1 + m(y - yl) + n(j - yl)a
is determined by the following conditions:

vhen y =y, <1,

n
[

W

73
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wvhen ¥y =y, &nd Yy~ Ty = 0.h0,

v = ()

where w(yd) ie read off the velocity profile of figures 1 and 2.

The value of y), 1s chosen so that the parabolic arc fite the
velocity curve w(y) closely over the widest possible rxange.

For ¢ = 1,

- 7 -1l .2 y -1 .22
T—Tl"[(Tl"l)"—'-a’*—-Mo W - 2 MOW

Therefore

2= T (Tgua * T) - [(Ti ](Ikul + 1) - m"* # (T + T

where

r - L‘y“ Yl d(:y‘ - ¥

and

L[ -y R CRED)
sy [ ) &7(3’3)]1:

Th
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Ik is evaluated by approximating w(y) by a parabolic arc as
followss '

YB“yl
Il=-—V;:—_ln “vfi:'m'z(y‘yl)
+m + Y -y
| €l o
I-- 1 m+ 2n(y - 1) I3V L Bo3 ()
Ue- 24 1 frm@-51)+ 0@ - 7)) k'lom o2 A
vhere A = - 4in.

Ag a control in the calculation of the series expression

Z a, (ler1) & for ;. o(c), 1se is made of the fact that, from

k=0
the definition of Ik and J’k,

kd_}@(x +J> w"’J>

L“’("’ 3) j Feal”

and therefors

]"m (al:+l 1 0k
k3o \ 8% - w(yJ_) k+ 1
The remainder after N - terms in the series for Kle(c) is given

apyroximately by

5
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[(7 + 1) term]
)

The reel part of Kl(c) is obtained by combining the results
of (a) and (b); that is, _

- . 2
R.P. K;(c) = R.P. |Kyq(c) + wl'c + K._Lg(c) - M,

(2) Evaluation of Hy(c)s

The Integrand of thls integral is free of singuwlarities in the
reogion of the complex y~planse bowmded by ¥ = 7y and ¥y = Vol -

therefore H.(c) is evaluated. by purely numerical integration. The
actual proce&ure employed for the calculatlon of integrals of thls
type iz ag follows: {(The integral Hl(c) gerved as8 an illustra-

tion,)
(2) Define
b b b
E. (c) = = pw"':' an - 2¢ pw 8n + 2 g a
. 1 “p n - 1 N
' 0 0 1118]

where
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and

o
%
uO

b= sV_____
v ¥ x*

(b} With the approximation that the viscosity varles linearly with
- the absolute btemperature, the velocity w is the same function of
the nondimensional stream fumction § as in the Blasius flow; that

is, :

v W:(ﬁ)i-wa(é) Il

where § 1s defined by the relation d&f = pw dn . (appendix B).

From these relstions

ov an = E‘{E)]n-l af —_- EJEB('QB)]IL dng
" since 4&f = wy dng. Moreover,

at ._
ow(t) T(WB) g

dn =

where

() = Ty - [(Tl -1 -2 5 - 302] Vg - Z";:'i AN

for o =1,
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(c) Finally, from the relations glven in (b),

b by _ \
1 ° 2 2
EFl(c) =% . vy dng - 2¢ X W dng o+ c/

- for the Blasiue flow. JFor

where b, 1is the value of B\j—
v ¥ x¥

the insulated surfaces, b, which is sorevhat arbltrary, was '
chosen &s 5.60; vhereas for the noninsulated swrfaces, by = 6.00,
(The value of wy abt 7z = 5.60 is 0.9950; vhen ng = 6.00,

wg = 0.9975. The value of b for the insulated surfaces le the

value of = at vhich w = 0.9950; whereas b for the noninsulated
surfaces is the velue of 7 for which 1-7.=_b0.99'_75.) The adveantage
o .
of this procedure ig that the integrals an d’qB are calculated
' . /0
once and for all.and the value of E,(c) d&epends only upon the

values of b and c. In fact,

= b - 2.3967

since

=+ 1.730

and
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Also,

W dng = by - 1.730

and

b bo
0 o

- Y -1 2
b, + 1.73(T; - 1) + 0.6667 =N,

[

b + 1.73 [(Tl -1) --——imo}+2.39671—;}-z~19

.See appendix B, (Incidentally, the last relation shows the effect
of free-stream Mach number and thermal conditions at the solid
surface on the "thicimess" of the boundary layer.)

{(3) Evaluatioﬁ of Hg(c):

He(c) _ Mo (VT c) (w - c) iy
¥y (w - ¢c)° by .
T2 2 Yo [ 2
T ; .
‘ } . ay (w-c) dy-M02 (w-¢) &y dy
vy (w-c) v, T vry dyy T
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Define
Yo P 2
By (o) = | . —2 o (w- o) o
yl (w - C) yl T
Jo [\F 2
H, (c) = =0 oy oy
% T
{ yl yl

(a) The integral ng(c) is evaluated by methods similar to those
already outlined for the evaluation of Hl( c). Thus

Jo (Y 2
H22(°) =f f (v - ) dy dy
T
ML
(2N _ r:sr . Yo y
=I dy v dy - 2¢ | d;yt o dy+ o -y p dy
UL vl yiL o ¢ ' Uy 1
1 [ [P LI - [ B [P
=—-§ T d.‘h:B£ Vi dnB-2c T d.nB‘L Wy d.nB+c TnB d:}B
b= \vo 0 0
vhere
P T - (ry -2 M 2 l Ly VR
A O R = R

The nine Integrals in the expression for 'Hga(c) are svaluated by
nvmerical lntegration using Simpson’s rulse.

80



NACA TN No. 1360
(b) Define

2 ¥ 5
B (c) = T ey | -e
7, (¥ - c)? ¥y T ..

1 1

J ¥y J. ¥
J q _a)2 2 w_ )2
___f T dy[ (w-c) dy"'f T dyf (w-c) ay
T (w-c)2 vy T yJ (w-c)2 yi T

Define

oy

193 7 dyry g_w—c)a

(c) =
Hoppte "

1 e

tT2 : J )
T (w -~ o)<
() - f o f R

3 1

The integral Hele(c) is evaluated as follows:

‘ye iy o
ey | L=l

yd ('W' - 0)2 .yl T

T Y I K7

f 2 g iy 2 (w-c)? dy - 2 = ay 2 (W-—c)2

Ty (w-c)2 y1 i ¥ (s-c)? v T

81

[}

~ Hpyp(e)

e T

]




WACA TN Fo. 1360

Bub
Y2 N
‘f _,___,?___....2. 4y = K'.LE.(C)
v (w - ¢)
J
and
L] 2 |
f G- 9 ay - gy (o)
T
i
80 that
5r2 | :572 2
T (W - c)
} . s &y
210t Gl Bl f (v - 02 ¥ L T
73 :
Define

In P
P(C) - ....-.—---——--E G(.V'; G) a-y
s (w - ¢}

b T

1

et s &{n; c)an
b2 LO.L!-b ('W - c)h
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where

G(n; c) =

I
5

and,

. [(T -l)--——-—-—-M ]w-z—;—-}moewz

The integral P(c) is evaluated by numericel integration using
Simpson's rule; the required valuea of w eare read directly off
the velocity profiles of figures 1 and 2. Finally,

Hpy p(6) = Kya(e) Ey(e) - B(o)

The integral HEJ_-L(C) is evaluated in exactly the same way
as Kj;(c) where '

(w - c)e o 2
ST

'W' tre

-y)*3w’(y’ y)

83
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R.P. [Hall(c] = 6)0212 + coa3 + d.cah' + noéé)

+ g 'b-,aa + © a3 + & a}’t ~ 2ab - 3&.2c' - 1!~a3d. - 5ahn
1 1 1 o o) - o o}

2f 2 3 2 3 1 2 3
+ o 6’2& + Cu87 - 2aby - 3a Gy - T dl --§-+ 3ac, + 6a d.0+lOa no>
+ 0'3(1:3&12 - 2aby - 33202' + 3ac, + 6aed;L + Dy - 2L&d.o - 1052n0 + a3>

+ chC- 2aby + 38CH + Py - 1@96‘.1 + g  + San, + al‘)

N U5[P _{_'q%_hsfo(“c')z]“ 1 f _-Uuifo'(h) L1 A2_fl_1
| 2" 36 e-o 13  [3%,(n) & T,

o 1fem0\[2 fl(”’l)cs P gfl(yl)fO'(yl)+}_fl(yl) N 1 R0
o oo e

8k
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o+ 2R - 2

(7).
S (’71)

fe(fl)f (Vl) 1 fé(yl) ) __—__>_ __fe'(yl)
[fo( yl)]a | h £ (yl)

3 £5(¥1)

-l g s ]

1 52(7) [o'(vl)] 15 500 | 1 20

R EEN AN XV BN Y IEXCY R EX Y]

-

e )l
- SR ) e )]
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£o (yl) 1 fe(arl) £ (Vl) [_,___ s 2y gp?r i

1
15" 57 o(yl) T fo(yl) o ,l) uo 3 T
" LN T oty o\

16 £ (yl) O(yl)
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TB ' oLt T" . ! 2 Paorre
2 +E. t -EAE’_.];.-EAE...}.:_.;. 2_A,2 - - L
L2 3 I, Ty T]_ Tl

2 56) 2 B ___)

T 15 fo(yl) 20 F (yl)
1 %) {B2 o Y
XL *3‘*3‘2‘*.2T1 (&
O P A Ay N o
+180 3—&-;— —2-32+2A3 +?+3A22—f; -EI;-—
Tltn m i 1 M, ¢ 3
Jhe 5<_L><ff&_ o
T Ty, J\% T,
N2
h3f0 (‘WC ) 1 (ﬂ > ( ) (Tl' 2 Tln
—— oA +-- + 34, fof =— 1} - —
36 By+ 2
36 i/ T
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L

—t

= Apq - Bohy - o - 2Lx<6

! - i - A _ TEEE

Y N P2

WAL T Aoyt - 3R M 3A2AL - At Ay k=23

- iv"AzAk L,AQIA 11 ..6/\_2 Ak ILAE' ‘;A}s -AeivAk K 2

_p (m)_, (m) - 2gEL®
wl - Mk ogmgh

- Af B -

= 2Ah

= 2(k3") + 2"*3‘*3";:

=,A3'A1+--.+ :”:3%"‘
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By = A3A5
Finally,

R.P. Bylc) = R.2. By (e} +Hy () - M P, (o)

(k) Evalué’cion of M3A(c):

Yo\ | 42 9o : COPT 2
M3(c>=f EL‘T“‘C“)”@J <'T 2~M°2>avf oo &y
1 . (v - ¢) 1 T

Mo(c) = Mgy (o) - M Fyp(e)

vhere
y . y, .
2 2 2 , RY-
M31(c>=j i’l’-é—g—dyj = 253[ = o) o
1 ¥ {(w - ¢} 71 T
and
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(a) The integral M32(c) is evaluated in much the same way
as Hae(c); that 1s,

2
b3M32(c) = dan Twy dng dng
U3:) /0
ibg, g
- 2¢ dnB TwB dnB dnB+ W dg J TwB dng d.nB
0 o gng VO
. o by, Ang . b, b, -
*e dng f Tup dngdngs| g Tng Ang
iJO 8 U0 0 B

+

bO bo T}B \ 3 / bo . bO
b1 g dng Tvg dng dng; - 2c Wy dng | Tip dng

0 dng do / - "B
bo by fing L Po b

+ dng Twy dnp dng |+ ¢ - dng Tng dng
0 B 40 ' vo U5

vhere b, has the same meaning as in the evaluation of Hps(c)
and vhere

W3 - Lé—"-l Mo%“fB2

7 = T(wB) Ty - [('I‘l



NACA TN No. 1360

The integrals in M32'(c) are evaluated by numerical integration

using Simpson's rule. Values of Wy are taken from the table in
appendix B. e o

(b) For convenience, the integral M3l(c) is ‘transformed as
follows: : -

M3l(c) = M'3;,_l(c) + M312(c) ~ 14313(0)

where
J ¥y 1
: J - o)2 J 2
M3y, (o) —f (WT 2 S 5 & (w - 0)” 4
T1 y (w-¢) dyy, T
M3 (o) = 9—%—-32—- ty | gy | o0
T ¥y (v - c)2 yi T
. 2 o J J o)
My () = g—‘i-T?-ﬁ)-m Ty | oo g
3 F.;j FJ (v - 0)2 J1 T
It is recognized that
v, i
2 .
22
(w'; C) ay = Hl(C)
: yl
o Y o
T -
dy (v - 2) -dy = (o)
5 Hy
7y (w - ¢) dJri T 12
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Therefore
. c) = H,(c (¢}
My (e) = Ey (o) Hp (o)
By additional transformations, the followlng equatlons ere obtaineds:

13,,(0) = E () (o) - a(e)

where
1R 2 5 Io 2 -
ale) = g_".’._é_f}_ ay T dy g.‘.‘:.:..?_)._ ay
Ty . ¥y {(w - c)° ¥ T
or
b n ' b
. 2 2
Q(c) = .];_ .(.ji..;f.)__ 6_1—] ..-.._E._...-.-. dn M—. d
v oy T dod (w-c)2 Jy T

The integral Q(c) is evaluated by numerical inteiration
uging Simpson’s rule; P(c) is evaluated in the calculation
of Ee‘?(C). ’

The integral M3_ll(c) is obtained in exactly the same way

as Kyy(c) and Hgll(c);__that is,
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(et A 2]
Finally, -
R.P. M3(c5 - RE. 1-1311_-(c) + 8 (o) Ezale(‘c) - P(c)] + Q(e) - M A, (o)
(5) Fvalustion of Na(c)s |
V7,

T 4 ( )2 72 P
N (c) = [ _ MOE] ay -y [ -Moa]dy
dy, Lw-c) oy 7 y w-e

. 172 y 2 Yo
Ny(e) = SR R CPR LY A T
Jri Gr- o) fyy T

93
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. Tt can be shown that the second and third integrals are identlocal;
therefore . :

Wy(e) = Ny (e) - 2M P p (o) + i MO

wvhere
To y R o Jo
N l(c) = —r dy .(_?."'._.'...f.?.... dy ...._'_I‘_..._. dy
3 (v - c)2 ™ 2
Uy T ¥ (v - c)
- T (w - ¢)
Nyplod = Nygle) = | (2

2
Ji (w - c) 5§y

Yo g (v - o)2
Ny, () = | (- 7)W
yl' ¥ .

(a) The integral N3l{_( c) is evaluated by numerical integration
in.a mamner similar to Hy(c), Ep(c), end Myo(c); that is,
| Bt

h g
2
(v - o)2
fw.@ .

g

l»b na-.b b 0n fib b Nn

D esase T 5 2
b3 dn| ow" dn| dn-2cf dn! pwdn| dn+c dn | pdn

0 i ' ¢n

ol
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%o "B P bg "B Py
I\T3h(c) =-:£'§ T dng W:Bd dngl T dng- 2¢| Tdng v dng{ T dng
b \do o U 0 0 B
5 by B bo
+ C T dnB d.'qB T B.'n_B
0 Y B

where

-1_.2 7 -1,,2 2
_[Tl Mo]“.B- 2 MoWB :

The integrels in N ,_P(c) are evaluated by numerical integration
© in a mepner similar to that used in the evaluation of M32( ¢c), and

go Porth. Most of the integrals will already have been evalusted
in the calculation of Hl(c), Hyn(c), and M32(c)

{b) For convenience, 1\1'32(0) is broken dowm as follows.

T2 T 7 (w 8)2
Nyp(e) = —_—ay —— (o - ¥7) &
(v - )2
1 T1
73 T | y.(w-- 0)2 T2 y(w- 0)2
) ( \)26'? (y2 ) y)dy+ ad 672 -y) S
yl W= c 1 y,j (W— 0)2 yl T

95
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NBQ(G) = N321(C) + N322(C) - N323(°) .
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it is found that

I‘I323(c) = P(c) - Pl(c)

where
yz yg o .
Pl(c) = -w}-——“" (w - C) (Y - yl) d'y
y,j (v - c)2 T
1 ® T
= wrearrasarammeem {3 (q- c)d.n
} 1vhe
b3 o (¥ - 2
and

be b . b a
W w 2 n an
{n; ¢} = —7q dn -~ 2c —n dn + © —
Gylns 1o Fn et =

f ! ¥ m

Pl( c) 1is evaluated by numerical integration using Simpson's rule,
Defline ’

To Yo (w

I CRoREI

71

T P
5 d;Y = Klg(c)
U, {w - ©)

91
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and

Io (v - o)2

T ay = El(c)

Iy

it is recognized that

Yo (W- 0)2

(c) = KlZ(c) Hl(C) -

V32, F-n)w

¥

To0.._ b nooy P 1
( C) (y yl)dy—-—-— p(w- c)edn‘ﬂ dn = p(w2 -~ 2CW+ cz)d.-q a:
- o |

71 b 0

(w 0)2 %o 2 B B o
0 s) 0

1
5 g B
+ C dnB T d'qB
o 0
The integral M—— (y - yl) is evaluated by numerical
y1

integration in exactly the same way as N%(c) .
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The integral N32 (c) is transformed as follows:
1

73 T 7 (v - ¢)2 e
N32 (c) = ———-—-2'dy T {(3"2 "_Yc)’(ﬁ"bc)]dy
:.L iy ('W' - C) ¢ . - i
N 1 ¢J1 ,
But
I3 ¥ 2
L ay | (w; o) dy = Hp, . (c)
w (w-o® |y F
) and
: | VoI =(Tp - ) -y, -7)=21-0
go that
Np (o) = (1 - o)y, () - 3y, (0)
where

Tyl = | T ey Mooy or) e
val (e - c) U1 T

The integral Jell( c) 1s evaluated in the same wey as Kll(c). Thus

99
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R.P, T, (o) = = T - l:%l: v o? <_ ki po>]
6-o\ | fa(m1)_ l fl(Fl) ih (1) #1(71)% (Yl)
e (e )

Co1 b 2 b
x-l-ga3+aC -a5D +c[--l;—-l+a3o +a(5Do+C)]

+ 02 (% + 6&2(30- lOaa'Do- ha3cj>' +—c3 .i_L; - haco + lOaZDO + 6a203>"

TA{7 . '
L 4 a 2(1) = 5( 5
" ‘}EP"*'Efovl'hacl")aD" U\

where

P 1 {-’1 Q’l) fl(yl)f'o'(yl)}

175 16 % (yl) Eo(yl)]a
U NP C)
6 2I,(yy) ° fF o(71)
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Finally
R.P., Nyp(c) = R.E. N321(c) * N322(c) - N323(c)
(c) Define '
To ¥ o W2
N3l(c) = "—E‘"’é dy SE_:_ELdy T - ay
.. {(w-2¢c) ¥y T 7 (w - ¢)

71

After several transformations,.the integral NBl( ¢c) 1s brought
inso e more convenient form

fyp () = Mgy (o) + Epplo) [2py, (o) + Hp (o) ] - Mgy (o)

vhers
T3 T 5 FJ
T (w - ¢) T
N = o Bt —
31, (e) Y- &y - ay P—
W1 T1 v
T2 v o Y
' N313(G) = -—?—.—; dy ('W - c_)__ dy ....—El——-— dy
FJ'(W'C)" gryg T 73 (w - c)?

The integral Niy (c) is evaluated by numerical inbegration
3

using Simpoon's rule. Some of the integrations have already been
poerformed., The integral is glven as

1
N313(0) = — dn

.an ~
v3 Jo.up (7 - ¢)® T

b
7 o fin Gr - 0)2 g p
0.4 (v - )2

0.4b
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The integral N3ll( ¢) is evaluated in exactly the same vay .
as K;q(c); that is, |

Ng1,(e) = (a

* 2.5,(7) - % fé"(yl)] } - [inta - 0)]% - 2,.._._....__:('-’:(’? ;)"). A

2
6 © 3"1) - a3 -;i:-pofo(yl) * % fl(yl)] *

e

2 - - 3
+ 0 {%- fov(yl) - —;—"- fo(yl) + a2t pofo(:i‘l) + 131 i‘l(yl)]- —g—- E- a3F}
2 J’ 1l a® - n
o L. 3 £ (1) + = % () - s.[—— ) (yl) + DL (Ty) + = i’l(yl)]
+ aaﬂ + 3»3—2-- F}-r- 0'3 %‘ofo(yl) - -::: fo' (yl) - -f;i fa(Y:I_)-% fo"(.')’l)- a(E+ F)]
. 1 |
+ GLP[(P]_ - Q4 fo(yl) + pofof(yl) - -g-fgn(ﬂ'l):]>

' o
+ In (a-0) [Blno‘+2~2-fl(yl 3%011(-”1)"“; Lil_g%%l} 2,

8" a a3 2 1 fl 71
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+ - ¥ B2 e vy YraD-adp £ l[l(yl)]
<3 1(3’1) (1) 1 1) “ Jl: 17 1) ” (Fl) }

+-z-a’29+0‘3 [pofl(yl)- £ ( l)_z_?_?-%%giﬁ-_ "(r,)- a(;:+c)}
ot E— " (yl) - poflf(y;_) + (q.o - pl)fl(yl}]]

£ e 52 o) e () ] i) e o 252 [ .62
- 1‘fo(yl)l’o] *+ (a"- 0)3 {““ fa(yl) Ly fl( 1) "5 %%_‘33‘

Gorn} - 2 L) - min) - ()]

. _
- _g__ (a - c)fe(yl) - -2- (& - 0)° 1n.(a - c)fl(?fl)

E;(_y_l)]

--—(a 0)20z_ '(7;) 1n (a- o) + (a- 0)3]_11(a- o)
£o(71)

( XA z(yl)-f‘-f (2% +“§'f1@'17]

"3 1(yl)P
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) ) - ) na)]F e e
[l }) 1 (e [ Feor)-o { 6.3 B

- %fl(yl)l’o} - I (‘f; o (’” )*5 {afl(il)(:) 2 E’: (yl)j[ iy }

}; 12ylflyl Po 17y \
-Eﬁl(yl)l’l.+l’of1'(yi)} = (7 Yo + SIS ) F( )l ]

f(y) Ty f(:y'l)

where

3

A= fl(yl v ‘} 2'(%1) - Pofl(yl)]

v Efl"("_’rl) R0 () + (% - Pl)fl(y]ﬁ
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o (o o 0 [ o)
X j [fl (yl)]e )" l) 28 (7181 ()% '(71)
i 1 (71) £5(71) tf (Vl)]e .

e ekl fi:gii;‘)ﬁ}} oy

AR o B

| C= [_lgﬁﬂ_ rq fl(yl) 1 fQ(yl)fl(y 1)

SRR

L.

EXCY 30 g,()

2 17 )0 (ﬁ} 1 [1(:@] )

D= pofy "(7y) + 2,71 (7 1) +< £,(v1) (1)
E= pofo'(yl> + Plfo(yl) + % fl'(yl)

F=pf1(Ty) + 4.5() - “fe(yl)

" Evaluation of i'k(m)

The functions fk(m) J1)s which appear repeatedly in the
evaluation of the integrals Kj(c), Hy(c), and so forth, are

evaluated in terms of w (¥) enda T,(K) as follows:
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w6 g,

Tk 5’,3-' ‘w 7\2(1: 1) k! K\VE)] = (.Yl\ pfk (yl)a +

( )(vl)' ~(T6°>y (m) _ _ [T (m)so+wl(m—l)€l+m(m—l) Tl(m-a)gg'*"_ o

(m jn;) tp! Tl(m_r)ng” Tlfh] ogmgé
where |
1
& = E‘:;S‘a _
& = —EEOA*B

BT ~2<80A2' + EIAQ)

(m-2)

g = -2 Lger(m-l) ‘m - ek

. (m-r—l)

+ . . g.._.,____._________g
(m_r) rv rAQ

E Epah 2]
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1 .
fl(m)(yl)= <tgo+ :_;'_ 81T>yl(m) - (ngo)y-l(m) +E (ng)yl(m) 0 é_ m __.<__ 5

05 (e, T e (), @ *gn Ly
J1 Iy
where
Loy fm) _ L )
? (Tgosﬂ)yl R X 1)"32]‘.,,1 =
and

e (e ire) @),
- %Eo(ﬁ)%} = | PARE
41
. . . ) . . 1 " 1 i
2 () - %E(Tivgo” e 'gl>.vl(m) 5 8°82)y1(m) =S 8°S3)y1(m)

1 | .
7[5 1>Sh]y o camas
1
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(m) = ....]:... v, | .5_ iv (m) 1 X r" (BI) 1 " (m)
f5 ‘(yl> T 180 I B+ P ng )yl + lTB T SOSZ)Yl + —h-é @3 5083);,'
- 1

}
I

t . 1 .
#C Sosu)y-l@ ” k8o E"o(yl)sﬂyl(m) oL mgl
(yl)-‘- 6OO(T1 8 +3T1 81)4 4 <,+O 1 2 II_\ terg 3+é_:"_.o Tl"Sh —_—

b om T8, - o 1.8
600 L5 " 3600 16

sh(k) - - g%(.k) * 3Bh-(k? - 1203(1‘) + ?-ﬁe(k) 4-_2337(1‘) 0Lk<?
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2 15
56=-'--'}-A,?-t-3136+6Bm-rl8(.'.'5+-l;~—139—-60()8+75DLL

ko 315
- 50 + 150Dy - 25y + 22Ty
'Ak(m) and, Bk(m) are defined ae pre‘t'iously .

c (¥) - 3, (¥) _ (k+l)
2 2

k) =‘§‘éh(k) . B?(1:) ) 33(1{+l)>
_2_ 'é‘)_(k) . 138(1:) ) Bh(k-!-l))

05 =_§_< (k)+B (L.) B(k+)>

SCEPAC %37(191)

T 7
Cg = Aghshy
p (B | o (8 1. (sl)
2 3 3



NACA TN Nc. 1350
D3(k) ) ;g_ (202(1:) . Ch(k) ) 03(1:;1)>
5, -1 (2(,8(3:) e _':Ch(k+l)>
5

», L <208(k) co,® cé(k+l>>

{x) p () _ 1 ()
=

E2 = Dy 2

|

(¥) 1 (k) (x) ktl)
B &“(3”5 D, - D, >

5 () g (9 _

s - {1c+1)

£
52 -

end N

Order of Magnitude of Imaginary Parte of Integrals Hy, M3, 3

In the detailed stebillty calculsbtions the contribubions of—
the iImaginary parts of the inbtegrals HE’ MS’ I\T_3, and so forth,

to the function v(c) are considered to be neziigible in carparison
with the contribution of the imaginary part of %(c) . A caleuwlation

of the orders of masuitude of I.P. Hp(c), I.P. M3(c), and I.P. N3(c)

from the general expressions given in the preceding pages shows that
this step is Justified, at least for the values of phasge velocity ¢
that appesr in the stability celculations,

For exsmple,

I.P. Bple) = L.E. Hy (o) “A(“c')efl(yc\)

jao
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where

Therefors

3
~ ki c
I.P. EE(C) 5 - ':-3' l(yc) T__l—(-w_l_'j

The contribution of I.P. He(c) to v(c¢) is epproximately equal
3 '
o ¢ w'c.
te v | = w————l, vhere v_= -— I.P. KZ_L(c). The quentity in
ol3zm (‘-‘J r) (s] T
N1 1
the brackets 1s of the order of 0.03, at most, in the calculations
of the present paper. (In the upproximate caleulations of 'Recr
min
for Mach numbers veyy much greater thau uwnlty, ¢ bscomes larze

1
because ¢ > 1 - —3 howsver, o Iis small vhen ¢ 1is not much

MO
1
greater than 1 - — eand the results of the calculations of Rg
. My C¥min
: W ic
based on the approximation v(c¢) = . I.P. Kl(c) are qualitatively
1
correct (fig. 7).)
@ |
From the expression for N3(e), I.P. I\I3(c) = — I.P. X 1(c),
_ ; L
2(w )
po that the contribution of I.P. N3(c) to v{c) is approximately

2.2
equal. to v - . The guantity in brackets is of the order

20 )°

of 0.06 at the most.
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The imaginary part of M3( ¢) 1is considerably smaller. In
fact,

' ' 6
- 1.2, M) = —

o I.P, KJ.(C)

and the contribution of I.P. M (c) %o v(e) is approximately
o .
-2 |
sgqual to Vo ——-—é--—---é . The guantlty ln brackets 1s of the
EXW

order of 0.001 at maximwm c.

2
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LPPENDIX B

CATCULATION OF MEAN-VELOGTIY AND MEAN-TEMPERATURE DISTRIBUTION
ACROSS BOUNDARY TAYER AND THE VELOCITY AND, TEMPERATURE
DERIVATIVES AT THE SOLID SURFACE

The msan-velocity and mean-temperature profiles for the several
representative cases of insulated and noninsulated surfaces are
calculated by a rapid approximate mebhod that glives the slope of
the velocity profiles at the surface wlth a maximm errcr of about
4 percent in the extreme came, for which T, = 0.70 and M, = 0.70.

The surface values of the higher velocity derivatives and the
temperature derivatives required in the stability calculations are
obtained directly from the eguations of mean motion in terms of the
calculated value of the slope of the velocity profile. The Prandtl
number is taken as unity.

Mean Velocity.Temperature Distribution across Boundary Layer

In a seminar held at the Cslifornia Institute of Technology
in 1942, the present author has shown that a good first approxi-
wmation to the mean veloclty distribution across the boundary layer
is obteined by assuming that the viscosity varies linearly with
the absolute temperature. With this assumption, the velocity w(f) 1is
.):
the same function of the nondimensional streem fumciion { = __\g
\lﬁ}u}ﬁ

as in the Blaslug case, and the corresponding disbtance from the

r————

surface 1§ = y% |—9° ig obbtainod by a simple quadratwre when o= L.
: Vo T :

Actually, the approximation w({) = wg({) 1s the Ffirst stage of en

lteration process applied to the differentisl oquations of mean

motion in the laminar boundery layer, in which p «TT"¢ (e

paramoter equal to 0.24 for air), and w(l) = w5(0) + ew, (L) + €2w2(§) e

Calculstion of wl(_f,) Por Ty = 1.50 and T = 2,00 for M, —>0

showed that the iteration process is rapidly convergent 3 the con-
tribution of the socond torm to tlie slope of the velocity profile

is 8 small
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at the surface is 5 percent for T,=1.50 and 8 percent for T;=2.00.

Tn the present calculations ‘the maximum error in the slope introduced
by taking w(l)} = wg({) is about % percent in the extreme case.

(See reference 15, in which the authors make use of a linear
viscosity-temperature reélation. See alsc reference 23.) :

Thet w({) = wg({) for a linear variation of viscosity with

abgolute temperature is seen diroectly from the equations of mean
motion in the laminar boundary leyer. The oquation of conbinuity
is sutomatically satisfled by taking

e
po* -d*,/*"
and .
ow.
p¥ ox*

Tho stream function VY¥* and the distance along the surfaco =x* are
golected as indepondent variahles followlng the procedurs of von Mises,
and the dynamic equation of mean motion becomes for zero pressure
gredient '

o © ' : .

_I§ dW_.d aw
T

Since_ p=— in the boundary layer, 1f p = T, +the dynamic equation in
this form is identical with the equation for the isothermal Blasius

11k
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flow, that is, w(f) = ws{t), or the value of the velocity ratio w
is equal to the Blasius value at the same valus of {. The corre-
[

¥
sponding velue of 7 = y¥ . , the nondimensional Y4issence"
Uor X
from the surface, ls obtalned as follows:

oxr
pW-:—a—.:-g-
an
¢ ¢
n"—: ‘E;-—: Tg:.g.
0 oW 0 W

If o =1, the energy and dynsm'c equations heve & unigue integral and

[(Tl - 1) - 3’.:_5 M 2} W - Z..;.& 1 2P 2

as shown by Crocco. Therefore,

G

But W(Q)EWB(Q), and

]§~—— \fe -gwdi

0

=3
I
l-a




NACA TN No. 1360

The integra.ls r vy dnp and f sz dnp &re glven in the
Vo 0

following table, and the mean-velocity and mean-temperature pro-
files can be calculated repldly 'ny this method, (The valuss

of (61]) are used” in the approﬁmate calculation of RQ
Tmin

(appendix c).)

My : B -
B L) t= W, dng vip© dng
t ;o
0.00 0.0000 0.0000 0.0000 0.3320
.20 .066k .0066 L0003 .3319
.ho .1328 L0265 ,00214 .331%
.60 .1989 L0595 .0081 .3300
.80 .26k7 L1065 .0189 L3274
1,00 .3298 .1660 L0367 .3230
1.20 .3938 .2385 L0620 .3165
1.40 L4563 .3236 .0993 .3079
1.60 L5168 4210 L1468 .2967
1.80 5TUS .5302 v 2064 .2825
2.00 . 6298 .6508 2792 2663
2,20 L6813 7821 .3654 .2483
2.40 7290 .9231 648 .2280
2.60 7725 1.0733 5776 1 .e06k
2.80 8115 - 1.2319 7034 .1835
3.00 8460 1.3978 - ,8h11, ,1618
3.20 8761 1.,5702 .9897 L1408
3.k0 .9018 1.7580 1,478 L1180
3.60 .9233 1.9306 1.3145 .0986
3.80 Lokl 2,1171 1.488kL . 0805
4,00 L9555 2.3067 1.6682 L0640
h.ho | L9759 2,6933 2.0419
k.80 .9878 3.0863 2,4280
5.20 .9gh 3.4828 2,8211
5.60 .9975 3.8812 _ 2.2180
6.00 . 9990 L ,2805 3.6167
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With the approximation that p varies linearly with the
absolute temperabure, the slope of the veloclty profile at the
solid surface is simply related to the slope of the Blesius pro-
file, Thus _ , ‘

ow dwal - daw

i e e O] e

o afag - at

Since w({) = 'WEB( 0, ‘.

ow (Bw
=P 5‘{
o A

owr 0.332
o/ T .
1

oY

vhere b is the value of 7 ab the "edge"” of the boundasry layer
(vhen w reaches an arbitrarily prescribed value close to umity).

It is seen that the chear stress at the surface (or the skin friction)
has the same value ag in the Blasius case

T ¥ = g, ¥ e -_-_-p-'/l-u — ~ = ¥ Q u_i.._- of— = {7 %
T 1 o{éw . o 1% 13 1
oy* /) Bnlay oy A B
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The reliability. of this approximatlion can be Jjudged from the calcula-
tions of the skin-friction coefficient in reference 2k, in which

T TO'76. From figure 2 of reference 2k, the value of the skin-
friction coefficient for an insulated surface at a Mach number

of 3.0 (Tl = 2.823) is only 1R percent lower than the Blasius
value and only 2 percent lower at-a Mach number of 2.0 ('I.‘l = 1.81).
For the noninsulated surface, with T, = 0,25, the valus of the
skin-friction coefficiernt at MO = 0 is only 7 percent greater than
the Blasius value and 12 percent greater at a Mach number of 3.00.

Since the shear stress—at the surface is unchanged in first
approximation, the boundary-laysr momentum thickness has the same
velue ag for the Blasilns flow

= 0,6667

The expression for the displacement thickness &% gives a measure
of the effect of the thermal conditions at the solid surface and
the free-stream Mach number on the thickness of -the boundary layer.
By definition,

i
~~
-
1
g
-
<
23

&%,

[ -0« (2 - )]y

= 173+ (7y - 1)1.73 + 22 u %0.6667)

=173 T, + 4 ; - »_%(0.6667)
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For the Blasius Tlow

The .Ythickness" of the bowndary layer b is given by
. y -1, 2
b = 5.§0 + (‘I’l - 1173 + R (0.666T)

and the form paremeter H =

LU
2]

= y-1.,2
_2.5OT1+ = Mo

For the insulated swrface,

H=2.50+3.50(7’1M2>
o [»}

A

Calculation of Mean-Velocity and Mean-Temperature Derivatives
Because of the sensitivity of the sbabllity characteristics of

the laminar houndary layer to the behavior of the quantity -— (

the values of the req_u:!.red volocity and temperature deri vat.,.ves at
the surface are calculated directly from the squations of mesn

motion, with p =T {(m = 0.76 fow» air), Now at g

—

= bpw 80

that the dynamic equation is -b ~w' (vaf')

L

Since [(0)= {'(0)=0,
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T 17"1'
where Tl = Wy [

words, the value of wl

(T -1)] if o'=l; In other

is readily compubed from the value

'is determined from the i‘elation

(k-1)! (Tm)l (1:-2)

n
Ty

of w'. In general, wl(k)
-2 (guyerR - ()
or
w2 1) -nf%'_wl(%-l-) Lot
(k1) (), ee)
+(k-l-s)s£ o R ¥y

2 e,
1
zulm

(k-2)!
(k-2 -2)!p!

1

120

(k-2-r} (r+1)
W, +

1

-

n
Ty

+ (k- 2)§ (k'3)w Foow s

2

(),

« *

L2 ()

1

]
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C]_(p) = b(p‘w) J(f?"‘l)

and

T o
p-1) . . - (p-2) _
b Lp wa+ (p l)pl LA
. (p - 1): o (p-a-) o (2) ,
(p-a- 1)igr 1
i,2,...5
1
T
1
.2
Tl
2
2(T1') T,"
3 2
T, _Tl
' Tlu (Tl')3 Tl' e
= 6‘1‘1 — -
o TllF T 2
1 -7
Mmoot 2 p 1
1 1l
= m{m - 1) ( 2) +
T
Tl 1
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ty: T s 3 ' " . .
(Tm) ~ = {m, 2) (l) '+ 3m(m -~ 1) o +mTl
Ty T12 N
(Tm)iv (T]_ |)ll- (Tl ')aI' " ( .
= (m, 3) 5 +6(m, 2)_ - +mm- 1) [)-I-T Mot
T, o3 T, 2 1oL
iv
+ 3(T ) ]+ mT
L @) (2 )7y
i (m, k) -T15 +10(m, 3) Tll‘ 15('.1‘ )(T )o

v
+ 10(T1')2T1:_~] mm-1) Lo T 1v]+m T
.2 1 11 T,

) (2)° (T ')L‘T ;o 3)
= (m, 5) — +15(m, L) " E!-5(T Q(T "2
1 1

v 2o(ry Yy oot [ 52 B faon g ng oo a5 2 e as(e,y)

T 3
N m(m - 1) . vi_
Te—- lO(T'“) 15T"Tiv+61"T ]+m....l_...
1 Tl
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(m, 2)

(m, n)

(m, 1)
(m, 2)
(m, 3)
(m. ¥)

(m, 5)

where

]

]

fl
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m(m - 1) (m - 2)
m{m - L)(n - 2).' . . (m-n)
0.76
-0,182k
0.226176
-0.50663L
1.641455

-6.959939

aw. '

7élMoe'(Tl'l)

aw,” - (7 - 1)1&02(1;1')2

=aw ' - 3(7 - l)Moewl’wl"

awliv - (7 - l)Mo2 [3 (wl")a + b o T ']
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B3
<4
B

awlv - 5(y - l)Moe(le"wl"' + wl'wliv)

V. awlﬂ' - (7 - l)Mo2 E.O(wl"')a + l5wl"1.:r_-_,_:w + 6wl'wlv]

-
1

Each velocity derivative is determined from the knowledge of all the
preceding derivatives.
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APPENDIX C

RAPID APPROXIMATTION TO THE FUNCTION (1 - 2a)v(c) AND THE
MINIMUM CRTITICAL REYNOLDS NUMBER

In section 5, a criterion was derived for the dependence of
the minimum critical Reynolds mumber Rg.., on the local distri-

bution of mean velocity and ftean temperature across the boundary
layesr. It was found that

[T(C VIL.76
1* 1 - Moe(l - C )

4

l—aio\

Crmin

vhere c¢_ is the value of ¢ for which (1 - 2A)v(c) = 0.580 and

wWe) = - = W;: = dy(..)]
< >1 (1 Bw\

il

— n——

T ( >3 on \I Bn/
-

=C

Ao) = Wl’(yc - Yl) 1
ow
N5
= - - 1
C
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A rapid method for the calculation of the fumction (1 - 2a)v(c)
and the minimum critical. Reynolds number is developed by meking
use of the approximation that the wviscoslty varies linearly with
the absolute temperature {appendix B). (Since the effect of
veriable viscoslity on the mean-veloclty profile is overestimated
in this approximation, the values of Racrmj_n (fig. 6(a)) calcu-

lated by this method are lower than the values calculated for p.='1‘0'76

when heat is added to the fluid through the solid surface and higher
when heat is withdrawm from the fluid.)

For u =T, +the dynamic equation (appendix B) is

(b 3 (1w
2 3n  on \P on

and therefore

T2 3 /1 dvw In2

meoria e | aem } 2
dw I \T W

But

or 1/

go that
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where

H
it

- [(Tl

e

‘2

T
o

Finally,

e - 22 () [ 22 ]

vg=c

The required values of wp, (%Y_) , and { ere obtained from the
'q . . R
table 1ln appendlx B.

The small correction to the slope A{(c) 1B easily calculated

once the mean veloclty profile has been obtained (append.ix B).
Thus

aMe) = 2o . | « A0) =0

The quantity (1 - 2A)v(c) has been caleulated as a function
of ¢ Zfor various values of T, at Mo = 0, 0.70, 1.30, 1.50, 2.00,

3.00, and 5.00, and the results of these calculatlions are given in
the following bable. The decisive stebilizing influence of with-
drawing heat from the fluid at supersonic velocities -is illustrated
in figure 7.
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Ty % Tmap ! % Moy,
M, =0 M, = 0.70
0.70 0.1945 3650 0.70 0.1670 84kLo
.80 .2695 1080 .80 .2390 2110
.90 3485 .|  ho2 .90 .3265 613
1.25 .5435 67 1.25 .5425 Th
1.50 L6240 36 1.50 6265 38
M, =1.30; ¢ >0.23L M, = 1.50; o >0.333
0.90 0.2455 | 9230 1.30 | 0.3550 | 2770
1.05 LLOT5 392 1.35 4585 275
1.20 5170 121 1.k0 .5505 99
1.3422 5450 92 1.4556 6276 49
1,50 .6355 L2 1.60 L7732 16
M = 2.00; ¢ >0,500 M, = 3.00; ¢ > 0.667
1.63 0.5074 671 2,48 0.6730 186
1,65 .5438 207 2.52 .7058 59
1,70 L6155 7 2,62 L7655 ol
1.75 6749 40 2.72 .8105 14
1,81 7275 25 2.77 .8295 10
1.85 L JT7612 19 2,8225 8500 9
M, =5.00; ¢ >0.800
5.19 0.8008 1Tk
5,20 .8036 80
5.30 .8262 23
5.75 .5008 6
6.0625 .9350 3
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I e Tt ' ., - Tt M o A I .:-; ..' I
L APPENDIX D

[ B e I — - ;
¥ - PR - cat T A, - L. P ot LS A

Teo o
'~

: 'Emywtaacm&-%;(g;gg- FROM EQUATIONS OF MeAN MOTTow' '~ '

.
ST Saai

syt

In order to determine the effect of free-stream Mach number,
thermal conditions at the solid swrface, or free-stream pressurs
gradient on laminar sta'biiity, it is necessary to know the relation
between these physical perameters and the distribution of the

guantity op :—-;—T acrbes the bowmdary layer. The value of g-‘- p gl;
' g

at the solid surface is cobtained directly from the dynamic equation

' : d.2 dw
(equations (6.3) and (7.2)). The value of —— {p = ] abt the
" \ &

surface, which 1s also useful in the discussion of laminar sta-
bility, ig obbained from the dynamic and energy sguations as

Pollowvs:
[a’B ( d.w> a2 (w>
— Y 3 ——— w——
dya dy 532 o .

wy'tr 2'9@_"’1‘1' wl’Tl" Ewi'(Tl’)e

T i +

T, 2 . g2
1 T 7, T,3

Differentlating the dynamic egquation once yields the result

1
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At the solid surface the rate of change of temperature %—-

3
and the rate at which the work is done by pressure gradient u* :i*

both vanleh, and the rate at which a fluid element loses heat by
conduction equals the rate &t which mechanical energy is transformed
into heat by viscous dissipation. The emergy eguation becomes.

_[%;@g] -.M( =

or
: 2
2 (7,
' =0y ~ 1M ("2 -n <0
1
Utilizing the expression for v 't and Tl” glves
2 (. )3
=-2(m+l)-—-—-—-—- +o’(l+m)(')’-—l)M
l
vhere

a /v’ m+ 1 1 82 aumg
5-3‘ "I'.- s 2 Tl'wl, - 1 % .
1 Tl : Tl L Uyt dx*
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2\

2 t
From this expression for F’-—- ( Y—)] the following con-
dy 1

clusions, which are utilized in the stability analysis, are reached:

2 !
When [ ( W’)] vanishes, the quantity [Z'? (F—)] is
T

gt1ll positive.

When the free-stream velocibty is uniform,

2 1 E - 3 Tt 2
i—-<f—) = o(l + m){y - l)M°2 (—wl—)— + 2(1 + m)? (—L)—w '
ay° \T . e

1 - . 1 o

3
Tl

32 for
that is, J—— -—-) - 1s always positive.
2\
dy 3

When the surface is insulated,
2 C o 3
da w!
"'é’(") = o(1 + m)(y - )M 2 (s )
ay | e, 2

’

4 w!
and [—-—-2- (;-)] is always Posi’cive, regardless of +the pressure .
1 .

gradient.
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APPENDIX E

.CALCULATION OF CRYTICAL MACH NUMBER FOR STABILIZATION
OF LAMINAR BOUNDARY LAYER

For thermal equilibrium the rate of heat conduction fram the
gas to the solid surface balances the rate at which heat -is radlated
from the surface., If the rate at which heat l1s withdrawn from the
fluid reaches or exceeds & coertain critical value at a glven local
supersonic Mach number, the laminer boundary-layer flow is stable
at all Reynolds numbers. (See section 6b.) The purpose of the
following brief calcuwlaetion is to determine the equilibrium surfaoce
temperatures at several Mach numbers and compare these temperatures
with the critical temperstures for leminar stability. (See fig. 8.)

When the solld surface is in thermal equllibrium

| VL, a-]::;e L
(&) w- | o[m @)= o
o} - 1 0

vhere € isg the emissivity, O 1s the Boltzmamn constant, and the
other symbols have already been defined. (See references 1 and 15.)
Consider the case in which the free stream is uniform and the
temperature is constant along the surface, For ¢ = 1,

o) T %
GRS
1 v 1

vhere stagnation temperature T, equals 1 + 2 ; 1, M2
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1‘To")z' 0. 332
LF x*

Also

if the epproximation u =T

is employed.. (See append.ix B.) Since k—f = cpr.*ui ” cpﬁ?'rl,

F(E) -om oo Te )RS
1

When the integrations in equation (1) are carried out, the fol-
lowing relation is obtained for the determination of the equilibrium
surface temperature:

V& (@ - 1) - (7 - 1) Vo

whers
(55)6 2

2 S a——— ——
Cp Po* Ho" \[(7 - Leoglo*

The equlilibrium surface temperabure under free-fligh-b condi-
tions 1s affected principally by the variablion in density Po P * with

altitude h. The results of calculations carried out for albti-
tudes of 50,000 snd 100,000 fest are given in the following tables

K = 2.27

) T .
h M s Tlequil s 7 oy
(£%) o (f1g. 8)
s0x 103 | 3.0 0.370 0.355
100 % 103 2.0 e 185
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In these calculations the followlng data are useds -

€ = 0,50
L=2*ft
T ¥ = 400° F abs,
- 10-13 2 L
¢ = 4,80 X 107 Btu/sec/rt</(deg F abe,)" -
¢, = 7.73 Btu/slug/deg F abs.
uo*'= 3.02 x_10'7 slugs/ft-sec
3':;'-')? = 980 f't/sec
P ¥ = 3.61 x 1074 slugs/ft3 at 50,000 Tt
= 3.31 X 1077 slugs/ft3 at 100,000 £t
K = 3.35 x 10°% at 50,000 £t
= 3.66 x 1073 at 100,000 %
Sincs Tg - T, > Ty = Tlcr for M, »3 &at50,000 feet

equil
altitude end for M, =2 at 100,000 feet altitnde, the laminar

boundary layer is completely stable vmder these conditions,

It should be noted that under wind-tunnel-test conditions in
‘which the model is stationary, these radistion-conduction effects
are absent, not only because of rerasdiation from the walls of the
wind turmel but also because the surface temperaturos are low -
generally of the order of room temperature.

134



ke

24

3.

L,

s,

6.

8.

9.

NACA TN No. 1360

"_hmmm‘cﬁs .

Heisenberg, Werner: U‘ber S‘babilita'b und Turbulenz. von
Flissigkeltoastrémen. Ann. d. Phys., 'Vierte Folge, Bd. Tk,
No. 15, 192k, pp. 577~627,

Tollmien, W.: ther die Entstehung der Turbulenz. Nachr. d. -
Ges. 4. Wiss. zu GSttingen, Math.~Phys. Kl., 1929, pp. 21-bi,
(Available as NACA T No. 609, 1931, . _

Tolimien, W.: Ein allgemeines Kriterium der Instebilitdt
laminarer Gescmmdigk'eitsverteilungen Nachr. d. Gos.
'd. Wiss. zu GSttingsny Meth.-Phys. KL., Neus Folge s
Bd. 1, Nr. 5, 1935, pp. 79-11k. (Availeble as NACA ™
No. 792, 1936.)

'Schlicht:l'ng. Het Ampli'bwderrver'beilmg und Energleblilsnz dsr

Xleinen Stbrungen bel der Plattenstrimung. Nachr. d. Ges.
Wiss. zu GOétbingen, Ma'bh.-Phys. Kl., Neve Folge, Bd. 1,
Nre 4, 1935, pp. 47-78.

Lin, "G, 0.. On the S'ba'bility of Two=Dimensional Parallel
Flows. Pert I. Quarterly Appl. Math,, vol. III, no. 2,
.July 1945, pp. 117-142; Part II, vol. III, mo. 3, Oct. 19’-1-5,
Ppe 218-234; and Part IIT, vol. IIT, no. ﬂ Jan, 1946
PP 277-301.

Llepmann, Hans W.: Investigations on Laminar Bouwndary=-ILayer
Stabllity and Trensition on Curved Boundsries. NACA ACR

No. 3E30, 19k3.

Schubguer, G, B., and Skramsted, H. K.$ ILaminar-Boundary-Layer
Oscilleations a.nd. Transition on & Flat Plate. NNACA ACR,
April 1943,

’

-

Lees, Lester, and ILin, Chis chiao: Investigation of the Sta-
© bility of 'bhe Ia.minar Boundary Layer in & Compress:.‘ble Fluid.
NACA TN No. 1115, 1946,

Pretsch; Je: Die Stabilitét der TLaminarstrémmg bei Druckgefédlle

und Diuckenstieg. Forschungsbericht Nre 1343, Deutsche
Luftfahrtforschung (C8ttingen), 19h1.

135



10.

1.

iz,

13.

1k,

15,

16.

17.

18,

19.

20,

21.

NACA TN No. 1360

ey

Oswatitsch, K., and Wieghardt, K.: Theoretische Untersuchungen
Uber stationsre Potentialstrcmungsn und Grenzschichten bel
hohen Geschwindigkeiten. Bericht S13/1. Teil der Lilienthal-
Gesellschaft firr Luftfahrtforschung, 1942, pp. 20-22.

Tlotjens, O.: Beitraze zur Entetehung der Turbulenz. Z.f.a.M.M.,
Bd. 5, Heft 3, June 1925, .pp. 200-217.°

Prandtl, L.: The Mechanics of Viscous Fluids. The Development
of Turbulence. Vol. III of Aerodynamic Theory, div, G,
sec, 26, W, ¥. Durand, ed., Julius Springer (Berlin), 1935,

pp. 178-190, )

Synge, J. L.: Hydrodynemical Stability. —Semicentennial
Publicetions, American Math. Soc.; vol. IIt Semicentennial

Addresses, 1938, »pp. 255-263.

Kiebel, I. A.: Boundary layer in Campressible Liguid with
Allowance for Radiation. Comptes Rendus Acad, Sci, USER,
vol., XXV, no. %, 1939, pp. 275-279. ‘ '

Hantzsche, W., and Wendt, H.: Die laminare Grenzschicht der
ebenen Platte mit und chne Warmeubergang unter Berucksichtigung
der Kompressibilitat., Jahrb. 1942 der deutschen Luftfahrt-
forschwng, R. Oldenbourg {(Munich) pp. I 40 - I 50.

Liopmann, . W.: Invostigation of Boundary Layer Trensitlon
on Concave Walls. NACA ACR No, 4328, 1945, pp. 1k-20,

Landau, L.: On the Problem of Twrbulence, Ccmptes Rendus
Acad. Sci. USSR, vol, XLIV, no. 8, 194k, pp. 311-31k.

Pretsch, J.,: Die Anfachung lnstabller Stafungen in elner
laminaren Reibungsschicht, Jahrb., 1942 der deutschen
Luftfahrtforschung, R. Oldenbourg (Munich), »p. I 54 - I T1.

Liepmenn, Hans W., and Fila, Gertruds H: " Investigations of
Bffecte of Surface Tempersturse and Single Roushness
Elements on Boundary-Layer Transition. NACA TN No, 1196, = °

19h7.

F¥rick, Charles W., Jr., and McCullough, George B.: Tests of a
Heated Low-Drag Alrfoil. NACA ACR, Dec, 19h2.

Schlichting, H., and Ulrich, A,: . Zur Beréchnung des Umschlages
laminer turbulent., Jahrb. 1942 der deutschen Luftfahrt-
forschung, R. Oldenbourg (Munich), pp. I 8 - I 35,

136



NACA TN No. 1360

22, Dorodnitzyn, A.: Laminar Boundary Laysr in Compressible Fluid.
Comptes Rendus Acad., Sci. USSR, vol., XXXIV, no. 8, 1942,
pp. 213-219. '

23. Brainerd, J. G,, and Emnons, H, W.: Effect of Variable Viscosity
on Boundary Layers, with a Discussion of Drag Measurements.
Jour. Appl. Mech., vol. 9, no. 1, March 1942, pp. A-1 ~ A-6,

24, von Karmén, Th., and Teien, H. S.: Bouwsdary Layer in Compressible

Flvids. Jour. fero. Sci., vol. 5, no, 6, April 1938,
p. 22‘7"232- .

137



NACA TN No. 1360

AUXTLIARY FUNCTIONS FOR CALCULATING THE STABILITY OF TEE LAMINAR

TABLE I

BOUNDARY LAYER FOR INSULATED SURFACE

138

¢ N v L Hy E, M3 K3
My = 0

0.0372 0.0000 0.0bok 0.0102 0.5220 | 0.288¢9 0.0689 0.2999
Lol .0001 .0029 .0285 L4Tu8 .27h0 .060L . 306L
1115 .0003 .0099 L0561 1303 .2590 .0530 .32k
L1486 .0006 .0235 .0940 .3887 L2433 .0k60 .3161
.1857 .0012 .ok62 L1430 .3499 .2278 .0ko3 .3211
.2226 .0021 .0802 .2040 .3139 .2120 .0350 .3230
L2594 .0033 .1284 .2782 .2808 .19558 L0301 .3217
.2960 .0050 .1937 .3670 .2505 1797 .0256 317k
.3323 0071 L2794 el .2232 .1639 ,0217 .3084
.3682 0098 .3896 .5960 .1987 L1487 .0180 .2935
ho37 .0131 .5286 .Th18 1770 .1350 0139 .2708
Lhik3 o1k2 5767 .790% L1711 .1312 0125 .2618

M° = 0.50

0.0362 -0.0000 -0.000L -0,0148 0.5122 0.2223 0.0k4k3 0.1927
.0723 -.0000 -.0001 -.023% L4671 .2127 .0ho1 .2086
.1085 .0001 .0029 -.02Lh Lok .2019 .0356 .2193
.14h6 .0003 .0107 -.0169 .3847 .1904 .0316 .2280
.1806 .0007 .0254 -.0003 3Tk .1789 .0282 .2366
L2166 .001k .0ho2 .0260 .3127 L1662 .024g .2h20
. 2525 .0023 L0846 .0627 .2807 .1530 .0217 .2k25
.oB82 .0036 L1342 .1103 .2513 .1390 0188 .2506
.3237 .0054 .2010 .1695 2246 .12Lh7 .0158 .2333
.3588 L0076 .2882 L2412 L2005 110k .0128 L2479
.3936 .0103 .kooo .3261 L1790 0963 .0094 o1k
. ,0137 5407 okt .1602 .0055 Jllhk
1306 .01k0 .5526 L4327 .1589 0816 L0051 L1397
14362 .0146 579k h501 .1560 0792 .0038 .1262

M, = 0.70

0.0353 -0.0000 -0.0009 -0.0321 0.5031 0.1839 0.0321 0.1484
.0705 -.0000 -.002k -.0590 4599 1786 ,0300 .1652
.1058 -.0000 -.0025 -.0791 k191 1721 .0279 .1819
1410 .0001 .0006 -.091k .3608 .1652 L0257 .1981
L1762 .000k .0090 -.0951 .34h8 .1569 .0233 .2128
L2111k .0008 .0248 -.0896 .3113 .1478 .0209 .2259
..2h6L .0015 .0501 -.07i .a802 L1379 0187 .2358
.2813 .0026 .0872 -.0k78 .2516 1272 L0165 .2h36
.3161 .0039 .138g -.0098 .2255 L1157 .01h2 L2466
.3505 .0058 .2082 .01z .2018 .10h2 .0118 L2817
.3847 .0081 *.2985 L1067 .1806 .0925 .0085 L2272
1185 .0109 L4137 .1886 .1619 .0813 .0052 .1987
k352 .0126 4821 .2363 .153% .0760 .0030 .1787
k52 .0137 .5270 L2674 L1486 L0733 .0016 .1618
4559 .01l9 .5790 .3027 L1436 .0709 -.0002 1575
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TABLE I - Concluded
AUXTI.IARY FURCTIONS FOR CALCULATING THE STABILITY OF TEE LAMINAR
BOUNDARY LAYER FOR INSULATED SURFACE -~ Concluded

c A v L Hl - H2 M3 N3

M, = 0,60
0.033% 0.0000 -0.0015 -0.0503 0.4816 0.1303 0.0180 0.0908
.0667 -.0001 -.00L7 -.0972 e .1298 .0185 1133
.1001 -.0002 -.0082 -.1369 .bokg .1281 L0185 L1366
.1335 -.0002 -.0102 ~.1746 .3696 .1253 .0182 L1504
.1669 -.0001 -.0090 -.203k4 .3365 .1213 LOLTS .1825
.2002 .0001 -.0029 -.2250 .3054 L1163 .0166 .2055
.2335 .0006 .0098 -.2387 L2765 1103 L0157 L2252
2666 .0012 .0312 -.2hk1 .2h97 .1030 L01k3 .2439
.2697 .0022 L0634 -.2407 2251 LOoLT .0128 .2597
.3326 003k .1086 -.2281 .2026 .0855 0110 .2703
.3652 .0051 L1697 -.2063 .1823 L0759 L0090 2674
.3976 .0072 2406 -.1730 .16k .0656 .0060 .2515

.L2g6 .0098 .3518 -.1302 .1480 . .0021 .21

612 0130 L4805 -. 0784 1340 .OL6k -.0036 L1431
4636 .0132 .ho13 -.0Thh 1330 L0463 -.00h0 L1373
4812 .0153 .5788 -.0421 1261 L0418 -.0076 100k

Mo = 1,10
¢.0990 ~0.0003 -0.01%0 =0.2037 0.4026 0.0673 0.0012 0.0806
.1320 ~. 000k ~.0206 -.2630 .3682 ", 0686 0038 .1068
.1650 -.0005 -.0255 -.3166 ,3358 .0683 L0051 .1319
.1680 -.0004 -.0272. -.36Lk0 .3054 0667 .0058 .1598
.230%9 -.0002 -.0232 -.koko L2770 .0632 .006k4 - .186k
.2638 .0002 -.0125 -. k396 2506 L0581 .0062 .2101
L2565 .0009 0072 -.1680 L2263 .0516 .0058 .2263
. 3292 .0018 .0382 -.4%906 2040 L0431 .00kT 2416
.3616 .0031 .0829 -.5086 .1837 .0333 .0031 .24sh
3938 .00k9 J1kk2 -.5239 L1655 .0218 0005 .2310
Lh2hb .0097 .22h7 -.5516 .1h08 .0081 -.0032 .183%
AisT2 .0098 .3300 -.5675 1350 -.0060 -.0087 o076k
L4836 L0126 ko7 -.6122 L1245 -.0203 -.0157 - 0737
.5104 0160 .5789 -.6875 L1151 -.0360 -.0230 -.2366

. M, = 1.30
0.25h1 -0.0008 -0.0561 -0,5982 0.2487 0.02h4L 0.0003 0.2200
.2858 -.0005 -.0505 -.6508 .2255 .0233 .0016 .2kbho
.3173 .0001 -.0364 -.6687 .20kl .0183 .001k .26LL
.3488 .0009 -.0117 -.Th30 L1845 .0109 .0003 .2Th2
.3800 L0021 .0258 -.7856 L1667 .0015 -.0016 .2700
L3111 L0037 L0790 -.8300 .1507 -.0099 -.0048 .2285
Lha8 L0057 .1508 -.883% .1366 -.0236 -.0000 L1184
A2 .0083 .2hkg -.9608 L1242 -.0hok -.0169 -.0818
.5020 .01k .3652 -1.0977 L1136 -.0628 -.029% -.kok3
.5072 0120 .3893 -1.133% L1119 -.0671 -.0324 -.5971
5416 0167 STTT -1.307h .1020 -.083k - 20549 -1.5080
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TABIE II

AUXTLIARY TUNCTIONS FOR CALCUIATING TEE STABILITY OF THE

IAMINAR BOUMDARY IAYFR FOR NONINSULATED SURFACE

140

c by v L Hy H2 H3 1‘3
¥, = 0,70; Ty = 0.70

0.0262 0.0056 0.0825 0.063% 0.6102 0.3272 0.052k 0.27h48
.0521 0112 .1645 .0949 5725 3157 .0502 <2920
OTTT .0166 2k66 .1184 5367 .3045 LOL81 .3081
.1030 .0220 .3297 +1k00 .5026 .2936 0ks8 .3233
1281 .027h% Li1k6 .1632 L4703 .2828 .0h33 .3380
1529 «0327 »5023 .1904 1396 2724 0412 .3519
.1701 L0365 .5661 .2130 1191 2651 .0395 .3610
.1726 .0370 ST54 2163 162 .2642 .039h .3623

M, = 0.70; T7 = 0.80

0.0237 0.0033 0.0486 0.0279 0.5954 | 0.2811 0.0493 0.1369
.0hT72 .0066 0965 L0374 5620 2737 LOW75 «150h%
.070% .0099 L1543 .0k30 5300 2663 0Us7 .1635
.0937 .0132 L1925 .0482 o9k 2590 .0k37 .1763
L1168 L0164 2h17 . ogzo 701 2514 .ok17 .1882
1397 0197 2926 0649 JAh20 2439 .0397 L2001
.162% .0230 .3457 0789 h152 .2363 .0378 .2110
.1851 .0263 k017 .0982 .3897 .2287 .0359 .2213
2075 .0297 JL61k% .1236 3654 .2210 .0339 .2311
2298 .0331 .5253 1562 342k .2133 .032) .2h00
.2Lo9 0349 .5592 754 .3313 L2054 -0310 .2kk3
2475 .0359 5801 L1877 .3248 2071 .0303 2465

l!o = 0.70; Tl = o.%

0.0433 0.0036 0.0517 0.0051 0.5506 0.2%10 0.0L435 0.1426
.0863 0072 .1028 -.00%7 .4939 230k .Ohoh .1638
.1201 .0108 .1568 -.0111 bl 2191 .0370 .18L6
JITLh .01s 2173 -.0079 <3930 .207h .0337 .2032
.2135 .0185 .288% .0096 .348% L1951 .030k .2203
.2351 .0227 #3746 .Oh62 .3080 .182% 0272 +2339
.2963 .0274% 11805 «1073 2715 1698 .02k0 2462
«3166 .0299 .5h26 .1489 2547 .1637 022k 2517
.3268 .0312 5762 1776 2466 . 0217 .25kl

M, = 0.70; Tq = 1.25

0.0346 1 -0.0016 | -0,0237 1{-0.0476 0.5100 0.1750 0.032k 0.1462
0692 -.0032 -.0k76 ~.0797 L4678 .1710 .0310 163
.1040 ~.00L8 -.0698 -.1013 4276 .1661 .0292 «175%
.1389 -.0062 -.0886 -.1132 .3896 .1600 0272 .1956
.1738 -.0076 -.1021 -.1155 .3538 1529 0251 2108
.2088 -.0087 -.1085 -.1081 3202 L1448 .0228 .2238
.2l39 -.0095 -.1057 -.0912 .2888 .1354 .0208 .23h2
.2789 -.0101 =.0917 -. 08453 «2597 .12hkg .018s 2502
«3 -.0103 ~.0641 -.0281 .2330 .1133 L0161 .2509
.3485 -.0100 -.0203 0179 .2086 .1 .0139 «2297
.3831 -.0092 .0k27 L0731k .1865 L0870 ,0113 2069
Jl17h -.0079 .1286 .1373 .1668 .0728 .0083 .1616
4512 -.0059 241k .2071 k95 . . .08156
5846 -.0031 3859 L2770 .13k5 .0k27 -.0012 -.0601
.5002 -.0006 .518h .3212 .1248 .031% -.0067 -.2262
.5190 .0006 5TT9 .3349 212 0269 -.0091 -.3028
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PHASE VELOCITY, WAVE NUMBER,AND REYNOLDS NUMBER POR NEUIRAL SUBSONIC

o « R Lo [ =
¥, = 0
0.0372 00321 25,500,000 0.0038 3,030,000
.O7hb . 1,500,000 .00 178,000
1118 ,1103 278,000 L0131 33,100
1486 . 83,000 9,880
1857 2146 32,600 0255 3,880
ggc’i . 24,800 0334 1,760
. .3590 7,700 27 917
.2960 5535 5420 osho 526
.3323 5707 2,760 L0679 329
.36%2 .T2l3 1, 2 220
o3t 9589 1,360 Jake 162
b3 1.0770 1,280 153
Lh1h3 1.2730 1,530 1515 182
L5037 1.2940 ’ .1540 223
. 1.1% :6«1,530 11;?3 b2y,
.3323 1.0 ,T10 12
2960 8728 13,300 .1039 1,283
239k STATT 21,500 3,270
MO = 0.%0
0.0362 0.0251 35,600,000 0.0029 %, 270,000
.0723 .0538 2,130,000 0063 ,
.1085 .0868 392,000 .0101 45,700
.Aak6 L1250 116,000 0146 13,500
.1806 L1665 iy, 500 .0158 5,190
L2166 .2216 20,200 2,360
2525 .2829 10, 400 0330 1,210
.2882 . &EG 5,850 bk 682
3237 k2 3,370 416
.3588 5549 2,330 06k 272
.3936 .6993 1,620 0812 183
k280 9301 1,230 i
4106 .9558 1,220 L1k 1hg
4362 1.0140 1,190 .1182 139
k362 1.1880 1,410 . 1384
.%306 1.2150 1,360 .16 184
4280 1.2150 1,660 .1h26 194
.397% 1.1240 3,080 .1310 359
3388 .9788 5,670 L1k 661
.3237 8212 10,800 096k 1,260
.2882 6869 21,100 .0800 2,460
M, = 6.70
0.0353 0.0191 53,100,000 0.0022 6,100,000
L0705 o415 3,060,000 L0047 3h9,000
.1058 L0677 555,000 0077 Gg.lm
L1410 .098% 161,000 ,0112 18,500
L1762 L34k 61,100 L0154 6,980
2114 . 1766 27,300 .0202 - 3,120
. 2u6k 2268 3,800 .02%9 1,380
.2813 857 7,630 .0326 8r2
.3161 .3570 4,550 .0ko8 520
3505 k33 2,900 .0306 331
-EBHT 5515 1,960 0630 22h
Jass 6951 1,h20 LOTgh 162
L35 .T917 1,230 -050h k1
52 8655 1,160 0989 132
4559 .gTol 1,110 11108 127
.hs59 1.1230 1,330 .1283 %52
k52 1.1420 1,650 .130L 189
k352 1.1230 1,980 .1283 227
4185 1.0720 2,670 1225 305
, 3847 9381 4,810 1072 550
.3505 L7965 8,880 _.0910 1,010
3161 6659 16,700 L0761 1,910
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TABLE IIT - Comcluded

1

PHASE VELOCITY,WAVE NIMBER, AND REYNOLDS NUMBER FOR NEUTRAL SUBSONIC DISTURBANCE
(STABILITY LIMITS) FOR INSULATED SURFACE - Concluded

c T .3 I R I oy F Re
MO = 0.90
0.033% 0.0107 111,000,000 0.0012 12,600,000
67 02 5,960,000 .0028 79,000
1001 oh21 1,030,000 .0048 117,000
1335 0632 000 -0072 33,000
186,000 .0101 12,100
2002 1186 146,000 0133 5,240
2335 15Lo 22,600 0175 2,5
. 1261 12,100 0223 1,
2997 2439 7,020
3326 3053 - 4,320 0348 koa
3652 37T 2,820 ch30 321
3976 638 1,950 .0329 282
5733 1,410 0653 161
4612 1,090 125
4636 7396 1,080 .08k3 123
.u812 10 1,010 100k 115
.k812 1.0130 1,230 15k 140
k636 1,0120 1,7h0 .1153 1%9
5612 1.0070 ,820 .11k8 207
k296 .9027 3,180 .1029 363
.3 .7823 5,590 .08g2 637
.3652 6642 9,940 o7 1,130
3326 -5523 5300 2,100
M, = 1.10
0.0990 0.0086 5,730,000 0.0009 618,000
1320 .0268 763, 0029 82,900
.1650 .0h68 22k ,000 .0050 2k,100
.1980 .0707 85,000 .0076 9,160
2309 L0991 38,300 .0107 u,cl)gg
. 2938 .1329 19,300 013 2,
3 1727 10,600 .0 1,140
.3292 .2200 6,260 0237
.3616 .2155 3,920 .029 ka3
-3938 L3417 2,610 -0 281
Jh2hs k139 1,850 .08 L
JhsT2 .5193 1,350 -0560 L
4836 .6 1,100 L0676 119
510k .8010 991 -086% o7
510k L9165 1,220 131
k836 3927 2,060 0962 223
RV .8023 3,320 .0865 58
. L6795 5,930 .0732 39
3938 .5766 10,400 .0622 1,120
M, = 1.30
0.2541 0.045L 63,800 0.0047 6,630
2?2858 ,0818 2h:800 L.0085 2,570
L3173 .1202 12,300 L0125 1,280
.3488 .1636 6,990 -0170 726
.3800 2132 h,280 .0222 kks
i .2707 2,800 - -0281 292
4518 3377 1,930 -0351 201
k721 .hes 1,k20 .0k33 b7
5020 .5123 1,110 .0532 1s
5072 .3316 1,070 L0552 11
5416 .T582 836 .0788 g2
5“16 _89 1,080 0928 112
5072 .Tlél 2,310 .0809 251
-5020 7592 2,550 -0789 3
ey 6ii58 %,500 -0671 468
8 5oL 7,980 -0561 82
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TABLE IV
PHASE VELOCITY, WAVE NUMBER, AND REYNOLDS NUMBER FOR REUTRAL

SUBSONIC DISTURBANCE (STABILITY LIMITS) FOR NONINSULATED SURFACES

c o R g R6
M, = 0.70; Ty = 0.70
0.0262 0.0339 82,400,000 0.0041 9,900,000
L0521 0734 5, 360 000 .0088 644,000
LOTT7 .1188 1,110,000 0143 133,000
.1030 .1708 371 000 .0205 kly 600
.1281 .2308 161 000 0277 19,300
L1529 .3030 83,hoo .0364 10,000
.1701 . 3670 57,200 .ok 6, ,870
.1726 3777 54,400 - LOh5h 6,5ho
1726 L4986 69,000 .0599 8,280
L1701 LhoTT 73,900 .0598 8, ,870
L1529 Jhr3e 121,000 0568 1h 500
1281 175 270,000 .0502 32,hoo
.1030 -3460 , 711,000 .0l16 85,400
OTTT .2620 2,500,000 0315 300,000
.0521 L1713 1h 6oo 000 0206 1,750,000
My = 0.70; Ty = 0.80
0.0237 0.0237 157,000,000 0.0028 18, 300,000
.ok72 .050k 9,910,000 .0059 1,150,000
.0705 .0804 1,970,000 .0094 230,000
0937 .1138 ’633,000 .0133 73,700
.1168 .1509 263,000 .0176 30,600
L1397 .1923 129,000 .022% 15,000
.1625 .2382 70,900 .0278 8,260
.1851 .2908 h2 600 .0339 k,960
.2075 .3520 27,500 .0k09 3,200
.2268 h237 18,800 .okol 2,190
.209 L4668 15,900 L05hh 1,860
2hs lo62 14,500 .0578 1,690
2h75 .6308 18,500 .0735 2,160
.2k0g .6233 | 21,k%k00 .0726 2,500
.2298 .6056 27,200 - L0706 3,170
.2075 .5609 uh ,900 0654 5,230
1851 .5062 T7, 100 .0590 9,010
1625 LLh65 1h1 000 .0520 16,400
1397 .3827 280 000 .okl 32, ’ 600
.1168 .316% 630 000 .0369 73,400
.0937 .248g9 1 690,000 .0290 197,000
L0705 .1822 5,890,000 .0212 686,000
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TABLE IV - Concluded
PHASE VELOCITY, WAVE NUMBER, AND REYNOLDS NUMBER FOR
NEUTRAL SUBSONIC DISTURBANCE (STABILITY LIMITS) FOR
NONINSULATED SURFACES - Concluded

c a ' R % Ry

M, = 0.70; T; = 0.90

0.0k33 0.0368 17,100,000 0.0042 1,930,000
.0863 .0815 1,040,000 .0092 118,000
L1291 .1353 ’ 200 ooo .0153 22,700
171k .1996 62, ,500 .0226 7.070
.2135 L2775 25,500 .031% 2,880
.2551 .3728 12, hoo .0h22 1, "110
. 2963 . ko8B0 6, s970 .0563 789
.3166 .581% 5 520 .0658 624
.3268 L6347 ,990 .0718 565
.3268 L7817 6,500 .0884 T35
.3166 L7701 7,920 .0871 895
.2963 .T307 11,600 .0827 1,310
.2551 6275 25, .0710 2,850
.2135 .5133 60,300 L0581 6 820
kel .3972 170 000 .Olkg 19,200
.1201 .2858 617,ooo .0323 69,800
.0863 .1793 3,740,000 .0203 k23,000

My = 0.70; T, = 1.25

0.0346 0.0160 8,800,000 0.0016 8,090,000
~ 0692 .0346 4, 380 000 .0036 hso 000
.10ko .056L 770,000 .0058 79,000
.1389 .0819 217,000 008k 22,200
.1738 .1120 78,900 .0115 8,100
.2088 L1477 3h 000 .0152 3,490
.2k39 .1899 16, 5500 .0195 .1,700
.2789 .2L03 8, ,830 .02h7 907
.31.38 . 3002 5,070 .0308 520
3485 .3722 3,110 .0382 319

3831 .b59L 2,020 .oh71 207
Jath .5668 1,380 .0582 1ho
Js12 L7061 1,000 L0725 103
.u8h6 .9067 T60 .0931 78
.5092 1.1800 6L3 1211 €6
.5190 1.1480 615 .1486 63
.5190 1.5880 640 .1630 66
.5092 1.7250 806 L1770 83
.18k6 1.5370 1,390 L1577 12
Js12 1,2580 2, 7h0 .1291 281
LTk 1.0330 5,360 .106C 550
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Figure l.~ Boundery-lasyer velocity profiles for insulated surface.
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Filgure 2.- Boundary-layer velocity profilee for noninsulated
surface. l(o = 0,70, Tl is the ratio of surface temperaturs

(deg abs.) to free-stream temperature (deg abs.). Infleotlon
morse pronounced and farther out into fluid for T, = 1,25

than for insulated surface (T; = 1.10). No inflection for
Ty = 0.70, 0.80, 0.90.
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Figure 7.- Stabilizing effect at supersonlc Mach numbers of
withdrawal of heat from fluid through solid surface. At
each value of l(o > 1, there is a critical value of '1‘1 = '!l !

such that for T, s 'l‘lor the leminar boundary-layer flow 16°T

stable at all values of the Reynolds number. (Curves for
K, =0 and ¥, = 0.70 included for comparison.)

Rg
v
estimated from equation (5.8), s e« T; 00 = 1. ®Tmin



Fig. 8 ' NACA TN No. 1360

R T T T
._:,. ¥ r; t ] e } R P b e T

j ; i " T ;~-$T Rraits RS TR
aaa 4 t T T

g favasgezazenizifa] heat withdrdwn from £luld peris iIsimauet
Hep : 12 ‘second per unit width of : HH

pas

: gaatt surface o
0 skin-friction coefficient for EH L
one side of surfase

: HR. ) L - :“'L. Riamaa :
Eintiad iy "ﬁ—"ﬂ' S L
o 2553 ]
L length of surfece _ PP H famin
N freeo-stresn temperature o

i X  heat-conduotion coeffiocient
2Lt of gas st fres-stresm : 4
100 : et temperaturs 1 -

(¥}

¥ fgezaii i saT T :
favanfuax 2 R an
£ 7 T
o8 : o
& 2
] ma was
« T

&4 f 1 s SEiaasai
HiLH

11 .6' b a2 :

- { N T 3 ot

3 i Hrb > £
HEH Enindd A1t Eatded ' FiH T T i

; £ : 5 Srvama ey apReizEgEEREET P

k et st - Sy hess, » apa: = e zagpeny]

o4 P SEdtHg i s i
: xE TR SN Frtrrator b e bR P
e P £ : : . 4
i AR P L 1 SR TR L He
cHE T R HH 3 iy .

CHHEY i'%' i BEaeygavia Avs 1 He s i LR LS

A t z 3 pExaaguAn an) ARNEW a3
= o PR T fhininiihay SR
: * e R R :1:_1_1

SRE R : Bl
: 3 NATIONAL ADVISORY i

. ) gaedzig COMMITTEE FOR AERONAUTICS .1iij

T T e s S Tr e "’iluﬁ%; t tfni 13

AL sl el PR RERERAL L

1 2

&

Figure &.- Oritical temperature ratio 'I.'l for
er
gtability of laminar boundary layer against
Mach number ¥,. T 4s the ratio of stagnation

temperature (deg abs.) to free-streanm terperature
(deg abs.) = 1+ -Z-‘-%—-l- n°2 for ¢ = 1.
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